分析 (1)由已知利用同角三角函數(shù)基本關(guān)系式,兩角和的正弦函數(shù)公式,三角形內(nèi)角和定理可求cosB=√22,可得B的值,進(jìn)而由正弦定理可得b的值,
(2)由余弦定理和基本不等式可求出ac≤2(2+√2),再根據(jù)三角形的面積公式計(jì)算即可
解答 解:(1)∵tanB+tanC=√2sinAcosC,
∴sinBcosB+sinCcosC=√2sinAcosC,
∴sinBcosC+cosBsinC=√2sinAcosB,
即sin(B+C)=√2sinAcosB,
∵A+B+C=π,
∴sinA=√2sinAcosB
∵sinA≠0,
∴cosB=√22,
∴B=π4.
又∵△ABC的外接圓半徑為R=√2,
∴由正弦定理sinB=2R,可得:b=2×√2×√22=2.
(2)由余弦定理的b=a2+c2-2accosB,
∴4=a2+c2-√2ac,
由基本不等式,得4=a2+c2-√2ac≥2ac-√2ac,
∴ac≤42−√2=2(2+√2),
∴S△ABC=12acsinB=√24ac≤√24×2(2+√2)=1+√2,
故△ABC面積的最大值1+√2.
點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角和的正弦函數(shù)公式,三角形內(nèi)角和定理,正弦定理,三角形的面積公式和基本不等式在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 323 | B. | 643 | C. | 16 | D. | 32 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4+√2+√6 | B. | 3+√2+√3 | C. | 2+√2 | D. | 3+√3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 16 | C. | 5或32 | D. | 4或5或32 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com