【題目】已知?jiǎng)訄A與軸相切于點(diǎn),過(guò)點(diǎn),分別作動(dòng)圓異于軸的兩切線,設(shè)兩切線相交于,點(diǎn)的軌跡為曲線.

1)求曲線的軌跡方程;

2)過(guò)的直線與曲線相交于不同兩點(diǎn),若曲線上存在點(diǎn),使得成立,求實(shí)數(shù)的范圍.

【答案】1 2

【解析】

1)設(shè)過(guò)點(diǎn)、與動(dòng)圓相切的切點(diǎn)分別為,計(jì)算得到,得到答案.

2)設(shè)直線的方程為,聯(lián)立方程得到,計(jì)算,,代入橢圓方程計(jì)算得到答案.

1)設(shè)過(guò)點(diǎn)、與動(dòng)圓相切的切點(diǎn)分別為,

,,

,

、的坐標(biāo)可知,,

由橢圓的定義可知,點(diǎn)是以、為焦點(diǎn),長(zhǎng)軸長(zhǎng)為4的橢圓(不包括長(zhǎng)軸端點(diǎn)).

設(shè)曲線的方程為:,即,,

故曲線的軌跡方程為

2)由題可知直線的斜率存在,設(shè)直線的方程為,

,,

設(shè),,,則,

,

,,

,

當(dāng)時(shí),,直線軸,滿足.

當(dāng)時(shí),,

代入橢圓方程得,化簡(jiǎn)得,

,且,且

綜上可得的取值范圍為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).(是自然對(duì)數(shù)的底數(shù))

1)求的單調(diào)遞減區(qū)間;

2)記,若,試討論上的零點(diǎn)個(gè)數(shù).(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】A、B兩種品牌各三種車型20177月的銷量環(huán)比(與20176月比較)增長(zhǎng)率如下表:

A品牌車型

A1

A2

A3

環(huán)比增長(zhǎng)率

-7.29%

10.47%

14.70%

B品牌車型

B1

B2

B3

環(huán)比增長(zhǎng)率

-8.49%

-28.06%

13.25%

根據(jù)此表中的數(shù)據(jù),有如下關(guān)于7月份銷量的四個(gè)結(jié)論:①A1車型銷量比B1車型銷量多;

②A品牌三種車型總銷量環(huán)比增長(zhǎng)率可能大于14.70%;

③B品牌三款車型總銷量環(huán)比增長(zhǎng)率可能為正;

④A品牌三種車型總銷量環(huán)比增長(zhǎng)率可能小于B品牌三種車型總銷量環(huán)比增長(zhǎng)率.

其中正確結(jié)論的個(gè)數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=ax3﹣(3a2x28x+12a+7gx)=lnx,記hx)=min{fx),gx)},若hx)至少有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( )

A.(﹣∞,B.,+∞)C.[D.[,]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】冠狀病毒是一個(gè)大型病毒家族,己知可引起感冒以及中東呼吸綜合征()和嚴(yán)重急性呼吸綜合征()等較嚴(yán)重疾病.而今年出現(xiàn)在湖北武漢的新型冠狀病毒()是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴(yán)重病例中,感染可導(dǎo)致肺炎、嚴(yán)重急性呼吸綜合征、腎衰竭,甚至死亡.

某醫(yī)院為篩查冠狀病毒,需要檢驗(yàn)血液是否為陽(yáng)性,現(xiàn)有n)份血液樣本,有以下兩種檢驗(yàn)方式:

方式一:逐份檢驗(yàn),則需要檢驗(yàn)n.

方式二:混合檢驗(yàn),將其中k)份血液樣本分別取樣混合在一起檢驗(yàn).

若檢驗(yàn)結(jié)果為陰性,這k份的血液全為陰性,因而這k份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這k份血液究竟哪幾份為陽(yáng)性,就要對(duì)這k份再逐份檢驗(yàn),此時(shí)這k份血液的檢驗(yàn)次數(shù)總共為.

假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是獨(dú)立的,且每份樣本是陽(yáng)性結(jié)果的概率為p.現(xiàn)取其中k)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為.

1)若,試求p關(guān)于k的函數(shù)關(guān)系式;

2)若p與干擾素計(jì)量相關(guān),其中)是不同的正實(shí)數(shù),

滿足)都有成立.

i)求證:數(shù)列等比數(shù)列;

ii)當(dāng)時(shí),采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)的期望值更少,求k的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解戶籍、性別對(duì)生育二胎選擇傾向的影響,某地從育齡人群中隨機(jī)抽取了容量為200的調(diào)查樣本,其中城鎮(zhèn)戶籍與農(nóng)村戶籍各100人;男性120人,女性80人,繪制不同群體中傾向選擇生育二胎與傾向選擇不生育二胎的人數(shù)比例圖,如圖所示,其中陰影部分表示傾向選擇生育二胎的對(duì)應(yīng)比例,則下列敘述中錯(cuò)誤的是( )

A. 是否傾向選擇生育二胎與戶籍有關(guān)

B. 是否傾向選擇生育二胎與性別有關(guān)

C. 傾向選擇生育二胎的人群中,男性人數(shù)與女性人數(shù)相同

D. 傾向選擇不生育二胎的人群中,農(nóng)村戶籍人數(shù)少于城鎮(zhèn)戶籍人數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)討論在區(qū)間上的單調(diào)性;

2)若時(shí),,求整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某攝影協(xié)會(huì)在201910月舉辦了主題慶祖國(guó)70華誕——我們都是追夢(mèng)人攝影圖片展.通過(guò)平常人的鏡頭,記錄了國(guó)強(qiáng)民富的幸福生活,向祖國(guó)母親70歲的生日獻(xiàn)了一份厚禮.攝影協(xié)會(huì)收到了來(lái)自社會(huì)各界的大量作品,從眾多照片中選取100張照片展出,其參賽者年齡集中在之間,根據(jù)統(tǒng)計(jì)結(jié)果,做出頻率分布直方圖如下:

1)求這100位作者年齡的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);

2)由頻率分布直方圖可以認(rèn)為,作者年齡X服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.

i)利用該正態(tài)分布,求;

附:,若,則,.

ii)攝影協(xié)會(huì)從年齡在的作者中,按照分層抽樣的方法,抽出了7人參加講述圖片背后的故事座談會(huì),現(xiàn)要從中選出3人作為代表發(fā)言,設(shè)這3位發(fā)言者的年齡落在區(qū)間的人數(shù)是Y,求變量Y的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)證明:當(dāng)時(shí),有最小值,無(wú)最大值;

2)若在區(qū)間上方程恰有一個(gè)實(shí)數(shù)根,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案