【題目】如圖, 已知四邊形ABCD和BCEG均為直角梯形,AD∥BC,CE∥BG,且,平面ABCD⊥平面BCEG,BC=CD=CE=2AD=2BG=2.
(1)求證:EC⊥CD;
(2)求證:AG∥平面BDE;
(3)求:幾何體EG-ABCD的體積.
【答案】(1)證明過程詳見解析;(2)證明過程詳見解析;(3)
【解析】試題分析:(1)要證,只要證平面;而由題設平面平面且,所以平面,結論得證;
(2)過G作GN⊥CE交BE于M,連DM,由題設可證四邊形為平行四邊形,所以有
從而由直線與平面平行的判定定理,可證AG∥平面BDE;
(3)欲求幾何體EG-ABCD的體積,可先將該幾何體分成一個四棱錐和三棱錐.
試題解析:
(1)證明:由平面ABCD⊥平面BCEG,
平面ABCD∩平面BCEG=BC, 平面BCEG,
EC⊥平面ABCD,3分
又CD平面BCDA, 故 EC⊥CD4分
(2)證明:在平面BCDG中,過G作GN⊥CE交BE于M,連DM,則由已知知;MG=MN,MN∥BC∥DA,且
MG∥AD,MG=AD, 故四邊形ADMG為平行四邊形,
AG∥DM6分
∵DM平面BDE,AG平面BDE,AG∥平面BDE8分
(3)解: 10分
12分
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), ,其中.
(1)當時,求函數(shù)的單調(diào)遞減區(qū)間;
(2)若對任意的, (為自然對數(shù)的底數(shù))都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題;命題:函數(shù)在區(qū)間上為減函數(shù).
(1)若命題為真命題,求實數(shù)的取值范圍;
(2)若命題“或”為真命題,且“且”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓C: =1的離心率e= ,動點P在橢圓C上,點P到橢圓C的兩個焦點的距離之和是4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若橢圓C1的方程為 =1(m>n>0),橢圓C2的方程為 =λ(λ>0,且λ≠1),則稱橢圓C2是橢圓C1的λ倍相似橢圓.已知橢圓C2是橢圓C的3倍相似橢圓.若過橢圓C上動點P的切線l交橢圓C2于A,B兩點,O為坐標原點,試證明當切線l變化時|PA|=|PB|并研究△OAB面積的變化情況.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量,,,其中0<α<x<π.
(1)若α=,求函數(shù)的最小值及相應x的值;
(2)若與的夾角為,且,求tan 2α的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市自來水公司每兩個月(記為一個收費周期)對用戶收一次水費,收費標準如下:當每戶用水量不超過噸時,按每噸元收。划斣撚脩粲盟砍^噸時,超出部分按每噸元收取.
(1)記某用戶在一個收費周期的用水量為噸,所繳水費為元,寫出關于的函數(shù)解析式.
(2)在某一個收費周期內(nèi),若甲、乙兩用戶所繳水費的和為元,且甲、乙兩用戶用水量之比為,試求出甲、乙兩用戶在該收費周期內(nèi)各自的用水量和水費.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標方程是ρ= ,以極點為原點,極軸為x軸正方向建立直角坐標系,點M(﹣1,0),直線l與曲線C交于A、B兩點.
(Ⅰ)寫出直線l的極坐標方程與曲線C的普通方程;
(Ⅱ)求線段MA、MB長度之積MAMB的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某小型企業(yè)甲產(chǎn)品生產(chǎn)的投入成本(單位:萬元)與產(chǎn)品銷售收入(單位:萬元)存在較好的線性關系,下表記錄了最近5次產(chǎn)品的相關數(shù)據(jù).
(投入成本) | 7 | 10 | 11 | 15 | 17 |
(銷售收入) | 19 | 22 | 25 | 30 | 34 |
(1)求關于的線性回歸方程;
(2)根據(jù)(1)中的回歸方程,判斷該企業(yè)甲產(chǎn)品投入成本20萬元的毛利率更大還是投入成本24萬元的毛利率更大()?
相關公式: , .
【答案】(1).(2)投入成本20萬元的毛利率更大.
【解析】試題分析:(1)由回歸公式,解得線性回歸方程為;(2)當時, ,對應的毛利率為,當時, ,對應的毛利率為,故投入成本20萬元的毛利率更大。
試題解析:
(1), ,
, ,故關于的線性回歸方程為.
(2)當時, ,對應的毛利率為,
當時, ,對應的毛利率為,
故投入成本20萬元的毛利率更大.
【題型】解答題
【結束】
21
【題目】如圖,在正方體中, 分別是棱的中點, 為棱上一點,且異面直線與所成角的余弦值為.
(1)證明: 為的中點;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中不正確的序號為____________.
①若函數(shù)在上單調(diào)遞減,則實數(shù)的取值范圍是;
②函數(shù)是偶函數(shù),但不是奇函數(shù);
③已知函數(shù)的定義域為,則函數(shù)的定義域是;
④若函數(shù)在上有最小值-4,(,為非零常數(shù)),則函數(shù) 在上有最大值6.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com