已知函數(shù)
(I)求函數(shù)f(x)的周期及單調(diào)遞增區(qū)間;
(II)在△ABC中,三內(nèi)角A,B,C的對邊分別為a,b,c,已知點經(jīng)過函數(shù)f(x)的圖象,b,a,c成等差數(shù)列,且,求a的值.
【答案】分析:(I)利用三角函數(shù)的恒等變換化簡函數(shù)f(x)的解析式為sin(2x+),由此求得周期的值,再令2kπ-≤2x+≤2kπ+,k∈z,求得x的范圍,即可得到函數(shù)的單調(diào)遞增區(qū)間.
(II)在△ABC中,由f(A)=sin(2A+)=,求得A=.再由 b,a,c成等差數(shù)列,求得bc=18,再由余弦定理可得 a2=b2+c2-2bc•cosA 求得a的值.
解答:解:(I)∵函數(shù)f(x)==sincos2x-cossin2x+cos2x=sin2x+cos2x=sin(2x+).
故函數(shù)f(x)的周期為T==π.
再令 2kπ-≤2x+≤2kπ+,k∈z,求得 kπ-≤x≤kπ+,k∈z,故單調(diào)遞增區(qū)間為[kπ-,kπ+],k∈z.
(II)在△ABC中,由題意可得f(A)=sin(2A+)=,∴2A+=,∴A=
再由 b,a,c成等差數(shù)列,可得2a=b+c,再由  可得 bc•cosA=9,∴bc=18.
再由余弦定理可得 a2=b2+c2-2bc•cosA=(b+c)2-3bc=4a2-3×18,解得 a2=18,
∴a=3
點評:題主要考查三角函數(shù)的恒等變換及化簡求值,三角函數(shù)的周期性、單調(diào)性和求法,余弦定理以及等差數(shù)列的性質(zhì)應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=e|lnx|+a|x-1|(a為實數(shù))
(I)若a=1,判斷函數(shù)f(x)在區(qū)間[1,+∞)上的單調(diào)性(不必證明);
(II)若對于任意的x∈(0,1),總有f(x)的函數(shù)值不小于1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(x-
12
)的定義域為(n,n+1)(n∈N*),f(x)的函數(shù)值中所有整數(shù)的個數(shù)記為g(n).
(1)求出g(3)的值;
(2)求g(n)的表達(dá)式;
(3)若對于任意的n∈N*,不等式(Cn0+Cn1+…+Cnn)l≥g(n)-25(其中Cni,i=1,2,3,…,n為組合數(shù))都成立,求實數(shù)l的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆山西大學(xué)附中高三4月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題共12分)已知函數(shù)的 部 分 圖 象如 圖 所示.

(I)求 函 數(shù)的 解 析 式;

(II)在△中,角的 對 邊 分 別 是,若的 取 值 范 圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=e|lnx|+a|x-1|(a為實數(shù))
(I)若a=1,判斷函數(shù)f(x)在區(qū)間[1,+∞)上的單調(diào)性(不必證明);
(II)若對于任意的x∈(0,1),總有f(x)的函數(shù)值不小于1成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x(x-
1
2
)的定義域為(n,n+1)(n∈N*),f(x)的函數(shù)值中所有整數(shù)的個數(shù)記為g(n).
(1)求出g(3)的值;
(2)求g(n)的表達(dá)式;
(3)若對于任意的n∈N*,不等式(Cn0+Cn1+…+Cnn)l≥g(n)-25(其中Cni,i=1,2,3,…,n為組合數(shù))都成立,求實數(shù)l的最小值.

查看答案和解析>>

同步練習(xí)冊答案