已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=,O為AB的中點(diǎn).

(Ⅰ)求證:EO⊥平面ABCD;

(Ⅱ)求點(diǎn)D到面AEC的距離.

答案:
解析:

  (Ⅰ)證明:連接

  

  為等腰直角三角形

  的中點(diǎn)

  ;2分

  又

  是等邊三角形

  ,4分

  又

  ,即

  ;6分

  (Ⅱ)設(shè)點(diǎn)到面的距離為

  ,;8分

  ,到面的距離

  

  ;10分

  

  點(diǎn)到面的距離為;12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•邯鄲一模)如圖,已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=
2

(Ⅰ)求證:平面EAB⊥平面ABCD;
(Ⅱ)求二面角A-EC-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•邯鄲一模)已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=
2
,O為AB的中點(diǎn).
(Ⅰ)求證:EO⊥平面ABCD;
(Ⅱ)求點(diǎn)D到面AEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=
2

(I)求證:平面EAB⊥平面ABCD;
(Ⅱ)求直線AE與平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年天津市高三第四次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=

(1)求證:平面EAB⊥平面ABCD

(2)求二面角A-EC-D的余弦值

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:河北省模擬題 題型:解答題

如圖,已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,AB=EC=2,AE=BE=
(I)求證:平面EAB⊥平面ABCD;
(II)求二面角A-EC-D的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案