【題目】已知圓,直線與圓相交于不同的兩點(diǎn),點(diǎn)是線段的中點(diǎn)。
(1)求直線的方程;
(2)是否存在與直線平行的直線,使得與與圓相交于不同的兩點(diǎn),不經(jīng)過點(diǎn),且的面積最大?若存在,求出的方程及對(duì)應(yīng)的的面積S;若不存在,請(qǐng)說明理由。
【答案】(1);(2)見解析.
【解析】
(1)先由圓的方程得到圓心坐標(biāo),根據(jù)點(diǎn)是線段的中點(diǎn),即可求出斜率,進(jìn)而可得直線方程;
(2)先設(shè)直線方程為:,根據(jù)點(diǎn)到直線的距離得到:到的距離,
進(jìn)而可表示出的面積,結(jié)合基本不等式即可得出結(jié)果.
(1)圓C:可化為,則,
而是弦的中點(diǎn),所以,所以斜率為,
則方程為:;
(2)設(shè)直線方程為:,即,
則到的距離,所以,
所以的面積,
當(dāng)且僅當(dāng),即時(shí)的面積最大,最大面積為2,
此時(shí),,或,
的方程為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四位同學(xué)參加比賽,只有其中三位獲獎(jiǎng).甲說:“乙或丙未獲獎(jiǎng)”;乙說:“甲、丙都獲獎(jiǎng)”;丙說:“我未獲獎(jiǎng)”;丁說:“乙獲獎(jiǎng)”.四位同學(xué)的話恰有兩句是對(duì)的,則( )
A. 甲和乙不可能同時(shí)獲獎(jiǎng) B. 丙和丁不可能同時(shí)獲獎(jiǎng)
C. 乙和丁不可能同時(shí)獲獎(jiǎng) D. 丁和甲不可能同時(shí)獲獎(jiǎng)
【答案】C
【解析】若甲乙丙同時(shí)獲獎(jiǎng),則甲丙的話錯(cuò),乙丁的話對(duì);符合題意;
若甲乙丁同時(shí)獲獎(jiǎng),則乙的話錯(cuò),甲丙丁的話對(duì);不合題意;
若甲丙丁同時(shí)獲獎(jiǎng),則丙丁的話錯(cuò),甲乙的話對(duì);符合題意;;
若丙乙丁同時(shí)獲獎(jiǎng),則甲乙丙的話錯(cuò),丁的話對(duì);不合題意;
因此乙和丁不可能同時(shí)獲獎(jiǎng),選C.
【題型】單選題
【結(jié)束】
12
【題目】已知當(dāng)時(shí),關(guān)于的方程有唯一實(shí)數(shù)解,則值所在的范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一圓經(jīng)過點(diǎn),,且它的圓心在直線上.
(I)求此圓的方程;
(II)若點(diǎn)為所求圓上任意一點(diǎn),且點(diǎn),求線段的中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,平面⊥平面, , , .
(Ⅰ)求證: ⊥平面;
(Ⅱ)求證: ⊥;
(Ⅲ)若點(diǎn)在棱上,且平面,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線,曲線,點(diǎn),以極點(diǎn)為原點(diǎn),極軸為軸正半軸建立直角坐標(biāo)系.
(1)求曲線和的直角坐標(biāo)方程;
(2)過點(diǎn)的直線交于點(diǎn),交于點(diǎn),若,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)的最大值及取得最大值時(shí)x的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)在上單調(diào)遞增,又函數(shù).
(1)求實(shí)數(shù)的值,并說明函數(shù)的單調(diào)性;
(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,且不等式對(duì)任意的恒成立.
(Ⅰ) 求與的關(guān)系;
(Ⅱ) 若數(shù)列滿足:,,為數(shù)列的前項(xiàng)和.求證:;
(Ⅲ) 若在數(shù)列中,,為數(shù)列的前項(xiàng)和.求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)在橢圓: 上, 是橢圓的一個(gè)焦點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)橢圓C上不與點(diǎn)重合的兩點(diǎn), 關(guān)于原點(diǎn)O對(duì)稱,直線, 分別交軸于, 兩點(diǎn).求證:以為直徑的圓被直線截得的弦長是定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com