精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=agx,g(x)=lnx-lna,其中a為常數,函數y=f(x)在其圖象和與坐標軸的交點處的切線為l1,函數y=g(x)在其圖象與坐標軸的交點處的切線為l2,l1平行于l2
(1)求函數y=g(x)的解析式;
(2)若關于x的不等式數學公式恒成立,求實數m的取值范圍.

解:(1)
y=f(x)的圖象與坐標軸交于點(0,a);y=g(x)的圖象與坐標軸交于點(a,0),
∴f′(0)=g′(a).

∵a>0,∴a=1
∴g(x)=lnx.
(2)①當x>1時,由 恒成立.
,則
,則 ,
∴h(x)在[1,+∞)上遞增.
∴?x>1,h(x)>h(1)=0.
∴φ′(x)>0.
∴φ(x)在[1,+∞)上遞增.
∴m≤φ(1)=1.
②當0<x<1時,由 即m>φ(x)恒成立.
同①可得φ(x)在(0,1]上遞減.
∴m≥φ(1)=1.
綜合①②得m=1.
分析:(1)利用導數的幾何意義,分別求兩函數在與兩坐標軸的交點處的切線斜率,令其相等解方程即可得a值
(2)不等式 恒成立,即當x>1時 恒成立;當0<x<1時得 恒成立.構造新函數 ,求其在[1,+∞)的最小值,在(0,1]上的最大值即可.
點評:本小題主要考查函數單調性的應用、利用導數研究曲線上某點切線方程、利用導數研究函數的單調性、函數恒成立問題等基礎知識,考查運算求解能力,考查數形結合思想、化歸與轉化思想.屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區(qū)二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案