三棱柱ABC-A1B1
C
 
1
中,AA1與AC、AB所成角均為60°,∠BAC=90°,且AB=AC=AA1,則A1B與AC1所成角的余弦值為( 。
分析:連結(jié)A1C,交AC1于點(diǎn)E,取BC的中點(diǎn)D,連結(jié)AD、DE.證出DE是△A1BC的中位線,得DE
.
1
2
A1B,因此AE、ED所成的銳角或直角就是A1B與AC1所成的角.然后利用題中數(shù)據(jù)在△AED中分別算出邊AE、ED、AD的長(zhǎng),根據(jù)余弦定理列式,即可算出異面直線A1B與AC1所成角的余弦值.
解答:解:連結(jié)A1C,交AC1于點(diǎn)E,取BC的中點(diǎn)D,連結(jié)AD、DE,
∵四邊形AA1C1C是平行四邊形,∴E是A1C的中點(diǎn)
∵D是BC的中點(diǎn),∴DE是△A1BC的中位線,可得DE
.
1
2
A1B,
因此,∠AED(或其補(bǔ)角)就是異面直線A1B與AC1所成的角.
設(shè)AB=AC=AA1=2,可得
∵∠A1AB=60°,
∴△A1AB是等邊三角形,可得A1B=2,得DE=
1
2
A1B=1.
同理,等邊△A1AC中,中線AE=
3
2
A1A=
3
,
又∵∠BAC=90°,AB=AC=2,D為BC中點(diǎn),
∴AD=
1
2
BC=
1
2
AB2+AC2
=
2

由此可得△ADE中,cos∠AED=
AE2-ED2-AD2
2AE•ED
=
3+1-2
3
×1
=
3
3

即異面直線A1B與AC1所成角的余弦值為
3
3

故答案為:
3
3
點(diǎn)評(píng):本題在特殊的三棱柱中,求異面直線A1B與AC1所成角的余弦值.著重考查了棱柱的性質(zhì)、三角形中位線定理和異面直線所成角的定義及求法等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在三棱柱ABC-A1B1C1中,側(cè)面AA1B1B是邊長(zhǎng)為2的正方形,點(diǎn)C在平面AA1B1B上的射影H恰好為A1B的中點(diǎn),且CH=
3
,設(shè)D為CC1中點(diǎn),
(Ⅰ)求證:CC1⊥平面A1B1D;
(Ⅱ)求DH與平面AA1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)
如圖(1)是一個(gè)水平放置的正三棱柱ABC-A1B1C1,D是棱BC的中點(diǎn).正三棱柱的主視圖如圖(2).
(Ⅰ) 圖(1)中垂直于平面BCC1B1的平面有哪幾個(gè)?(直接寫出符合要求的平面即可,不必說明或證明)
(Ⅱ)求正三棱柱ABC-A1B1C1的體積;
(Ⅲ)證明:A1B∥平面ADC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=
6
,M是棱CC1的中點(diǎn),
(1)求證:A1B⊥AM;
(2)求直線AM與平面AA1B1B所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:在直三棱柱ABC-A1B1C1中,已知AB=A1A,AC=BC,點(diǎn)D、E分別為C1C、AB的中點(diǎn),O為A1B與AB1的交點(diǎn).
(Ⅰ)求證:EC∥平面A1BD;
(Ⅱ)求證:AB1⊥平面A1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:湖北省部分重點(diǎn)中學(xué)2010屆高三第一次聯(lián)考 題型:解答題

 

        如圖所示,在正三棱柱ABC—A11C1中,BB1=BC=2,且M是BC的中點(diǎn),點(diǎn)N在CC1上。

 
   (1)試確定點(diǎn)N的位置,使AB1⊥MN;

   (2)當(dāng)AB1⊥MN時(shí),求二面角M—AB1—N的大小。

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案