【題目】已知函數(shù)

(1)求曲線(xiàn)的斜率為2的切線(xiàn)方程;

2)證明:;

3)確定實(shí)數(shù)的取值范圍,使得存在,當(dāng)時(shí),恒有

【答案】(1);(2)見(jiàn)解析;(3

【解析】

(1)求導(dǎo),根據(jù)導(dǎo)數(shù)的幾何意義列出方程求出切點(diǎn)坐標(biāo),按照點(diǎn)斜式寫(xiě)出方程;

(2)構(gòu)造函數(shù)利用導(dǎo)數(shù)求出最值即可證明不等式;

(3)分類(lèi)討論,當(dāng)時(shí),不滿(mǎn)足題意;當(dāng)時(shí),根據(jù)不等式的性質(zhì)得出不滿(mǎn)足題意;當(dāng)時(shí),構(gòu)造函數(shù),利用導(dǎo)數(shù)證明即可.

1)函數(shù)的定義域?yàn)?/span>.

.

,即,得,(舍).

,

所以曲線(xiàn)的斜率為2的切線(xiàn)方程為

2)設(shè),則

.

,(舍).

當(dāng)時(shí),

當(dāng)時(shí),.

所以上單調(diào)遞增,在上單調(diào)遞減.

所以.

所以.

3)由(2)可知,

當(dāng)時(shí),

所以不存在,當(dāng)時(shí),恒有;

所以不符合題意.

②當(dāng)時(shí),對(duì)于,

所以不存在,當(dāng)時(shí),恒有

所以不符合題意.

③當(dāng)時(shí),設(shè).

因?yàn)?/span>

.

因?yàn)?/span>,

解得.

又因?yàn)?/span>,

所以.

.

當(dāng)時(shí),;

所以上單調(diào)遞增.

所以.

.

所以符合題意.

所以實(shí)數(shù)的取值范圍是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某游戲棋盤(pán)上標(biāo)有第、、、、站,棋子開(kāi)始位于第站,選手拋擲均勻硬幣進(jìn)行游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到跳到第站或第站時(shí),游戲結(jié)束.設(shè)游戲過(guò)程中棋子出現(xiàn)在第站的概率為.

1)當(dāng)游戲開(kāi)始時(shí),若拋擲均勻硬幣次后,求棋子所走站數(shù)之和的分布列與數(shù)學(xué)期望;

2)證明:;

3)若最終棋子落在第站,則記選手落敗,若最終棋子落在第站,則記選手獲勝.請(qǐng)分析這個(gè)游戲是否公平.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

已知幾何體A—BCED的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長(zhǎng)為4的等腰直角三角形,正視圖為直角梯形.

1)求此幾何體的體積V的大;

2)求異面直線(xiàn)DEAB所成角的余弦值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐中,OA、OB、OC所在直線(xiàn)兩兩垂直,且,CA與平面AOB所成角為DAB中點(diǎn),三棱錐的體積是

1)求三棱錐的高;

2)在線(xiàn)段CA上取一點(diǎn)E,當(dāng)E在什么位置時(shí),異面直線(xiàn)BEOD所成的角為?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果存在常數(shù)a,使得數(shù)列{an}滿(mǎn)足:若x是數(shù)列{an}中的一項(xiàng),則a-x也是數(shù)列{an}中的一項(xiàng),稱(chēng)數(shù)列{an}為“兌換數(shù)列”,常數(shù)a是它的“兌換系數(shù)”.

1)若數(shù)列:23,6,mm6)是“兌換系數(shù)”為a的“兌換數(shù)列”,求ma的值;

2)已知有窮等差數(shù)列{bn}的項(xiàng)數(shù)是n0n0≥3),所有項(xiàng)之和是B,求證:數(shù)列{bn}是“兌換數(shù)列”,并用n0B表示它的“兌換系數(shù)”;

3)對(duì)于一個(gè)不少于3項(xiàng),且各項(xiàng)皆為正整數(shù)的遞增數(shù)列{cn},是否有可能它既是等比數(shù)列,又是“兌換數(shù)列”?給出你的結(jié)論,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為的等邊三角形中,點(diǎn)分別是邊上的點(diǎn),滿(mǎn)足,將沿直線(xiàn)折到的位置. 在翻折過(guò)程中,下列結(jié)論成立的是(

A.在邊上存在點(diǎn),使得在翻折過(guò)程中,滿(mǎn)足平面

B.存在,使得在翻折過(guò)程中的某個(gè)位置,滿(mǎn)足平面平面

C.,當(dāng)二面角為直二面角時(shí),

D.在翻折過(guò)程中,四棱錐體積的最大值記為,的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是定義在R 且周期為1的函數(shù),在區(qū)間上, 其中集合D=,則方程f(x)-lgx=0的解的個(gè)數(shù)是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系上,有一點(diǎn)列,設(shè)點(diǎn)的坐標(biāo)),其中 ,,且滿(mǎn)足).

1)已知點(diǎn),點(diǎn)滿(mǎn)足,求的坐標(biāo);

2)已知點(diǎn),),且)是遞增數(shù)列,點(diǎn)在直線(xiàn)上,求;

3)若點(diǎn)的坐標(biāo)為,,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù).

(1)求實(shí)數(shù)的值,使得為奇函數(shù);

(2)若關(guān)于的方程有兩個(gè)不同實(shí)數(shù)解,求的取值范圍;

(3)若關(guān)于的不等式對(duì)任意恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案