如圖,在平面直角坐標系xOy中,橢圓C:=1(a>b>0)的左焦點為F,右頂點為A,動點M為右準線上一點(異于右準線與x軸的交點),設(shè)線段FM交橢圓C于點P,已知橢圓C的離心率為,點M的橫坐標為.

(1)求橢圓C的標準方程;
(2)設(shè)直線PA的斜率為k1,直線MA的斜率為k2,求k1·k2的取值范圍.
(1)=1(2)
(1)由已知,得解得∴橢圓C的標準方程為=1.
(2)設(shè)點P(x1,y1)(-2<x1<3),點M.∵點F、P、M三點共線,x1≠-2,
,y2,∴點M.
∵k1,k2,∴k1·k2.
∵點P在橢圓C上,∴=1,∴=-(-9).
∴k1·k2.
∵-2<x1<3,∴k1·k2<-.∴k1·k2的取值范圍是
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的兩焦點在軸上, 且兩焦點與短軸的一個頂點的連線構(gòu)成斜邊長為2的等腰直角三角形
(1)求橢圓的方程;
(2)過點的動直線交橢圓C于A、B兩點,試問:在坐標平面上是否存在一個定點Q,使得以AB為直徑的圓恒過點Q?若存在求出點Q的坐標;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,正方形ABCD內(nèi)接于橢圓=1(a>b>0),且它的四條邊與坐標軸平行,正方形MNPQ的頂點M、N在橢圓上,頂點P、Q在正方形的邊AB上,且A、M都在第一象限.
 
(1)若正方形ABCD的邊長為4,且與y軸交于E、F兩點,正方形MNPQ的邊長為2.
①求證:直線AM與△ABE的外接圓相切;
②求橢圓的標準方程;
(2)設(shè)橢圓的離心率為e,直線AM的斜率為k,求證:2e2-k是定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,F(xiàn)為橢圓的右焦點,M、N兩點在橢圓C上,且=λ(λ>0),定點A(-4,0).
(1)求證:當λ=1時,;
(2)若當λ=1時,有·,求橢圓C的方程..

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系中,若,且.
(1)求動點的軌跡的方程;
(2)已知定點,若斜率為的直線過點并與軌跡交于不同的兩點,且對于軌跡上任意一點,都存在,使得成立,試求出滿足條件的實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在同一坐標系中,方程的曲線大致是( )

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的一個頂點為A(2,0),離心率為.直線y=k(x-1)與橢圓C交于不同的兩點M,N.
(1)求橢圓C的方程;
(2)當△AMN的面積為時,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓C1:+=1(a>b>0)與雙曲線C2:x2-=1有公共的焦點,C2的一條漸近線與以C1的長軸為直徑的圓相交于A,B兩點.若C1恰好將線段AB三等分,則(  )
A.a(chǎn)2=B.a(chǎn)2=13
C.b2=D.b2=2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知F1、F2是橢圓C:=1(a>b>0)的兩個焦點,P為橢圓C上一點,且.若△PF1F2的面積為9,則b=________.

查看答案和解析>>

同步練習冊答案