【題目】質(zhì)量監(jiān)督局檢測某種產(chǎn)品的三個(gè)質(zhì)量指標(biāo),用綜合指標(biāo)核定該產(chǎn)品的等級(jí).若,則核定該產(chǎn)品為一等品.現(xiàn)從一批該產(chǎn)品中,隨機(jī)抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:
產(chǎn)品編號(hào) | |||||
質(zhì)量指標(biāo)() | |||||
產(chǎn)品編號(hào) | |||||
質(zhì)量指標(biāo)() |
(1)利用上表提供的樣本數(shù)據(jù)估計(jì)該批產(chǎn)品的一等品率;
(2)在該樣品的一等品中,隨機(jī)抽取2件產(chǎn)品,設(shè)事件為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標(biāo)均滿足”,求事件的概率.
【答案】(1)0.6;(2).
【解析】
(1)分別計(jì)算10件產(chǎn)品的綜合指標(biāo),找出滿足條件的件數(shù),除以總的10件,即可估計(jì)總的一等品率;
(2)寫出所有的基本事件并得其種數(shù),找出滿足條件綜合指標(biāo)均有的基本事件數(shù),由古典概型概率計(jì)算公式求得答案.
(1)計(jì)算10件產(chǎn)品的綜合指標(biāo),如下表:
產(chǎn)品編號(hào) | ||||||||||
4 | 5 | 6 | 5 | 6 | 5 | 6 | 6 | 3 | 4 |
其中的有共6件,故該樣本的一等品率為,
從而估計(jì)該批產(chǎn)品的一等品率為0.6.
(2)在該樣本的一等品中,隨機(jī)抽取2件產(chǎn)品的所有可能結(jié)果為:
共15種.
在該樣本的一等品中,綜合指標(biāo)均滿足的產(chǎn)品編號(hào)分別為,
則事件發(fā)生的所有可能結(jié)果為 共3種,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關(guān),現(xiàn)收集了該種藥用昆蟲的6組觀測數(shù)據(jù)如下表:
溫度x/℃ | 21 | 23 | 24 | 27 | 29 | 32 |
產(chǎn)卵數(shù)y/個(gè) | 6 | 11 | 20 | 27 | 57 | 77 |
經(jīng)計(jì)算得:
,,線性回歸模型的殘差平方和,,
其中分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),
(1)若用線性回歸模型,求y關(guān)于x的回歸方程(精確到0.1);
(2)若用非線性回歸模型求得y關(guān)于x的回歸方程為,且相關(guān)指數(shù).
①試與1中的回歸模型相比,用說明哪種模型的擬合效果更好.
②用擬合效果好的模型預(yù)測溫度為35℃時(shí)該用哪種藥用昆蟲的產(chǎn)卵數(shù)(結(jié)果取整數(shù))
附:一組數(shù)據(jù)其回歸直線的斜率和截距的最小二乘估計(jì)為,;相關(guān)指數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】太極是中國古代的哲學(xué)術(shù)語,意為派生萬物的本源.太極圖是以黑白兩個(gè)魚形紋組成的圓形圖案,俗稱陰陽魚.太極圖形象化地表達(dá)了陰陽輪轉(zhuǎn),相反相成是萬物生成變化根源的哲理.太極圖形展現(xiàn)了一種互相轉(zhuǎn)化,相對(duì)統(tǒng)一的形式美.按照太極圖的構(gòu)圖方法,在平面直角坐標(biāo)系中,圓被的圖象分割為兩個(gè)對(duì)稱的魚形圖案,圖中的兩個(gè)一黑一白的小圓通常稱為“魚眼”,已知小圓的半徑均為,現(xiàn)在大圓內(nèi)隨機(jī)投放一點(diǎn),則此點(diǎn)投放到“魚眼”部分的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一塊各面均涂有油漆的正方體被鋸成27個(gè)大小相同的小正方體,若將這些小正方體均勻地?cái)嚮煸谝黄,從中任意取出一個(gè),則取出的小正方體兩面涂有油漆的概率是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科研課題組通過一款手機(jī)APP軟件,調(diào)查了某市1000名跑步愛好者平均每周的跑步量(簡稱“周跑量”),得到如下的頻數(shù)分布表
周跑量(km/周) | |||||||||
人數(shù) | 100 | 120 | 130 | 180 | 220 | 150 | 60 | 30 | 10 |
(1)在答題卡上補(bǔ)全該市1000名跑步愛好者周跑量的頻率分布直方圖:
注:請(qǐng)先用鉛筆畫,確定后再用黑色水筆描黑
(2)根據(jù)以上圖表數(shù)據(jù)計(jì)算得樣本的平均數(shù)為,試求樣本的中位數(shù)(保留一位小數(shù)),并用平均數(shù)、中位數(shù)等數(shù)字特征估計(jì)該市跑步愛好者周跑量的分布特點(diǎn)
(3)根據(jù)跑步愛好者的周跑量,將跑步愛好者分成以下三類,不同類別的跑者購買的裝備的價(jià)格不一樣,如下表:
周跑量 | 小于20公里 | 20公里到40公里 | 不小于40公里 |
類別 | 休閑跑者 | 核心跑者 | 精英跑者 |
裝備價(jià)格(單位:元) | 2500 | 4000 | 4500 |
根據(jù)以上數(shù)據(jù),估計(jì)該市每位跑步愛好者購買裝備,平均需要花費(fèi)多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),以極軸為軸的正半軸,取相同的單位長度,建立平面直角坐標(biāo)系,直線的參數(shù)方程為 .
(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;
(2)設(shè)曲線經(jīng)過伸縮變換得到曲線,曲線上任一點(diǎn)為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過拋物線的焦點(diǎn),斜率為的直線交拋物線于兩點(diǎn),且.
(1)求該拋物線的方程;
(2) 為坐標(biāo)原點(diǎn),為拋物線上一點(diǎn),若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟(jì)全球化、信息化的發(fā)展,企業(yè)之間的競爭從資源的爭奪轉(zhuǎn)向人才的競爭,吸引、留住培養(yǎng)和用好人才成為人力資源管理的戰(zhàn)略目標(biāo)和緊迫任務(wù),在此背景下,某信息網(wǎng)站在15個(gè)城市中對(duì)剛畢業(yè)的大學(xué)生的月平均收入薪資和月平均期望薪資做了調(diào)查,數(shù)據(jù)如下圖所示.
(Ⅰ)若某大學(xué)畢業(yè)生從這15座城市中隨機(jī)選擇一座城市就業(yè),求該生選中月平均收入薪資高于8500元的城市的概率;
(Ⅱ)若從月平均收入薪資與月平均期望薪資之差高于1100元的城市中隨機(jī)選擇2座城市,求這2座城市的月平均期望薪資都低于8500元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】推進(jìn)垃圾分類處理,是落實(shí)綠色發(fā)展理念的必然選擇,也是打贏污染防治攻堅(jiān)戰(zhàn)的重要環(huán)節(jié).為了解居民對(duì)垃圾分類的了解程度,某社區(qū)居委會(huì)隨機(jī)抽取1000名社區(qū)居民參與問卷測試,并將問卷得分繪制頻率分布表如下:
得分 | |||||||
男性人數(shù) | 40 | 90 | 120 | 130 | 110 | 60 | 30 |
女性人數(shù) | 20 | 50 | 80 | 110 | 100 | 40 | 20 |
(1)從該社區(qū)隨機(jī)抽取一名居民參與問卷測試,試估計(jì)其得分不低于60分的概率;
(2)將居民對(duì)垃圾分類的了解程度分為“比較了解“(得分不低于60分)和“不太了解”(得分低于60分)兩類,完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為“居民對(duì)垃圾分類的了解程度”與“性別”有關(guān)?
不太了解 | 比較了解 | |
男性 | ||
女性 |
(3)從參與問卷測試且得分不低于80分的居民中,按照性別進(jìn)行分層抽樣,共抽取10人,連同名男性調(diào)查員一起組成3個(gè)環(huán)保宜傳隊(duì).若從這中隨機(jī)抽取3人作為隊(duì)長,且男性隊(duì)長人數(shù)占的期望不小于2.求的最小值.
附:
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com