【題目】設(shè)等差數(shù)列{an}滿(mǎn)足a3=5,a10=﹣9. (Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)求{an}的前n項(xiàng)和Sn及使得Sn最大的序號(hào)n的值.
【答案】解:(Ⅰ)由an=a1+(n﹣1)d及a3=5,a10=﹣9得 a1+9d=﹣9,a1+2d=5
解得d=﹣2,a1=9,
數(shù)列{an}的通項(xiàng)公式為an=11﹣2n
(Ⅱ)由(1)知Sn=na1+ d=10n﹣n2 .
因?yàn)镾n=﹣(n﹣5)2+25.
所以n=5時(shí),Sn取得最大值
【解析】(1)設(shè)出首項(xiàng)和公差,根據(jù)a3=5,a10=﹣9,列出關(guān)于首項(xiàng)和公差的二元一次方程組,解方程組得到首項(xiàng)和公差,寫(xiě)出通項(xiàng).(2)由上面得到的首項(xiàng)和公差,寫(xiě)出數(shù)列{an}的前n項(xiàng)和,整理成關(guān)于n的一元二次函數(shù),二次項(xiàng)為負(fù)數(shù)求出最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某營(yíng)養(yǎng)學(xué)家建議:高中生每天的蛋白質(zhì)攝入量控制在[60,90](單位:克),脂肪的攝入量控制在[18,27](單位:克).某學(xué)校食堂提供的伙食以食物A和食物B為主,1千克食物A含蛋白質(zhì)60克,含脂肪9克,售價(jià)20元;1千克食物B含蛋白質(zhì)30克,含脂肪27克,售價(jià)15元. (Ⅰ)如果某學(xué)生只吃食物A,判斷他的伙食是否符合營(yíng)養(yǎng)學(xué)家的建議,并說(shuō)明理由;
(Ⅱ)為了花費(fèi)最低且符合營(yíng)養(yǎng)學(xué)家的建議,學(xué)生需要每天同時(shí)食用食物A和食物B各多少千克?并求出最低需要花費(fèi)的錢(qián)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家規(guī)定個(gè)人稿費(fèi)納稅方法為:不超過(guò)800元的不納稅,超過(guò)800且不超過(guò)4000元的按超過(guò)800元的部分14%納稅,超過(guò)4000元的按全部稿費(fèi)的11%納稅,
(1)試根據(jù)上述規(guī)定建立某人所得稿費(fèi)x元與納稅額y元的函數(shù)關(guān)系;
(2)某人出了一本書(shū),獲得20000元的個(gè)人稿費(fèi),則這個(gè)人需要納稅是多少元?
(3)某人發(fā)表一篇文章共納稅70元,則這個(gè)人的稿費(fèi)是多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+b(a,b∈R). (Ⅰ)已知x∈[0,1]
(i)若a=b=1,求函數(shù)f(x)的值域;
(ii)若函數(shù)f(x)的值域?yàn)閇0,1],求a,b的值;
(Ⅱ)當(dāng)|x|≥2時(shí),恒有f(x)≥0,且f(x)在區(qū)間(2,3]上的最大值為1,求a2+b2的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中, , ,且△ABC的周長(zhǎng)為 .
(1)求點(diǎn)A的軌跡方程C;
(2)過(guò)點(diǎn)P(2,1)作曲線(xiàn)C的一條弦,使弦被這點(diǎn)平分,求此弦所在的直線(xiàn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系xOy中,過(guò)橢圓M: (a>b>0)右焦點(diǎn)的直線(xiàn)x+y﹣ =0交M于A,B兩點(diǎn),P為AB的中點(diǎn),且OP的斜率為 . (Ⅰ)求M的方程
(Ⅱ)C,D為M上的兩點(diǎn),若四邊形ACBD的對(duì)角線(xiàn)CD⊥AB,求四邊形ACBD面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,E為PA的中點(diǎn),F(xiàn)為BC的中點(diǎn),底面ABCD是菱形,對(duì)角線(xiàn)AC,BD交于點(diǎn)O.求證:
(1)平面EFO∥平面PCD;
(2)平面PAC⊥平面PBD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列{an}是首項(xiàng)為0的遞增數(shù)列,fn(x)=|sin (x﹣an)|,x∈[an , an+1],n∈N* , 滿(mǎn)足:對(duì)于任意的b∈[0,1),fn(x)=b總有兩個(gè)不同的根,則{an}的通項(xiàng)公式為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com