解答:解(Ⅰ)由f(x)=x
3+ax
2+bx+c 求導(dǎo)數(shù)得f'(x)=3x
2+2ax+b,
過y=f(x)上點(diǎn)P(1,f(1))的切線方程為:y-f(1)=f'(1)(x-1),
即y-(a+b+c+1)=(3+2a+b)(x-1),
而過y=f(x)上P(1,f(1))的切線方程為:y=3x+1,
故
,即
∵y=f(x)在x=-2時有極值,故f'(-2)=0
∴-4a+b=-12…(3)
由(1)(2)(3)相聯(lián)立解得a=2,b=-4,c=5,
f(x)=x
3+2x
2-4x+5…(4分)
(Ⅱ)f'(x)=3x
2+2ax+b=3x
2+4x-4=(3x-2)(x+2)
x |
[-3,-2) |
-2 |
(-2,) |
|
(,1] |
f'(x) |
+ |
0 |
- |
0 |
+ |
f(x) |
|
極大 |
|
極小 |
|
f(x)
極大=f(-2)=(-2)
3+2(-2)
2-4(-2)+5=13 f(1)=1
3+2×1-4×1+5=4
∴f(x)在[-3,1]上最大值為13 …(8分)
(Ⅲ)y=f(x)在區(qū)間[-2,1]上單調(diào)遞增
又f'(x)=3x
2+2ax+b,由(1)知2a+b=0∴f'(x)=3x
2-bx+b
依題意f'(x)在[-2,1]上恒有f'(x)≥0,即g(x)=3x
2-bx+b≥0在[-2,1]上恒成立.
①在
x=≥1時,g(x)最小值=g(1)=3-b+b>0②在
x=≤-2時,g(x)最小值=g(-2)=12+2b+b≥0則b∈Φ
③在
-2≤≤1時,g(x)最小值=≥0綜合上述討論可知,所求參數(shù)b取值范圍是:b≥0…(12分)
或者(Ⅲ)y=f(x)在區(qū)間[-2,1]上單調(diào)遞增
又f'(x)=3x
2+2ax+b,由(1)知2a+b=0∴f'(x)=3x
2-bx+b
依題意f'(x)在[-2,1]上恒有f'(x)≥0,即g(x)=3x
2-bx+b≥0在[-2,1]上恒成立∴
b≥==3(x-1)++6(x≤1)令m(x)=3(x-1)+
(x≤1)
則m(x)
≤-6∴()max=0∴b≥0