遼寧某大學對參加全運會的志愿者實施“社會教育實踐”學分考核,因該批志愿者表現(xiàn)良好,該大學決定考核只有合格和優(yōu)秀兩個等次,若某志愿者考核為合格,授予0.5個學分;考核為優(yōu)秀,授予1個學分,假設該校志愿者甲、乙、丙考核為優(yōu)秀的概率分別為、、,他們考核所得的等次相互獨立.
(1)求在這次考核中,志愿者甲、乙、丙三人中至少有一名考核為優(yōu)秀的概率;
(2)記在這次考核中甲、乙、丙三名志愿者所得學分之和為隨機變量X,求隨機變量X的分布列.
(3)求X的數(shù)學期望.
(1)(2)(3)
(1)記“甲考核為優(yōu)秀”為事件A,“乙考核為優(yōu)秀”為事件B,“丙考核為優(yōu)秀”為事件C,“甲、乙、丙至少有一名考核為優(yōu)秀”為事件E.
P(E)=1-P( )=1-P()P()P( )=1-××.
(2)由題意,得X的可能取值是,2,,3.
因為P(X)=P()=,
P(X=2)=P(A )+P(B)+P(C )=
P(X)=P(AB)+P(AC)+P(B C)=,
P(X=3)=P(ABC)=,
所以X的分布列為:
X

2

3
P




(3)由(2)知E(X)=×+2××+3×.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某超市為了解顧客的購物量及結算時間等信息,安排一名員工隨機收集了在該超市購物的50位顧客的相關數(shù)據,如下表所示:
一次購物量(件)
1≤n≤3
4≤n≤6
7≤n≤9
10≤n≤12
n≥13
顧客數(shù)(人)

20
10
5

結算時間(分鐘/人)
0.5
1
1.5
2
2.5
已知這50位顧客中一次購物量少于10件的顧客占80%.
(1)確定的值;
(2)若將頻率視為概率,求顧客一次購物的結算時間的分布列與數(shù)學期望;
(3)在(2)的條件下,若某顧客到達收銀臺時前面恰有2位顧客需結算,且各顧客的結算相互獨立,求該顧客結算前的等候時間不超過2分鐘的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(
x
-
3
x
)n
的展開式中各項二項式系數(shù)的和為64,則該展開式中的常數(shù)項為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

甲、乙、丙三名射擊運動員射中目標的概率分別為、a、a(0<a<1),三人各射擊一次,擊中目標的次數(shù)記為ξ.
(1)求ξ的分布列及數(shù)學期望;
(2)在概率P(ξ=i)(i=0、1、2、3)中,若P(ξ=1)的值最大,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

袋中有5只乒乓球,編號為1至5,從袋中任取3只,若以X表示取到的球中的最大號碼,試寫出X的概率分布.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設某項試驗的成功率是失敗率的2倍,用隨機變量X去描述1次試驗的成功次數(shù),則P(X=0)等于(  )
A.0B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某校設計了一個實驗考查方案:考生從道備選題中一次性隨機抽取道題,按照題目要求獨立完成全部實驗操作.規(guī)定:至少正確完成其中道題的便可通過.已知道備選題中考生甲有道題能正確完成,道題不能完成;考生乙每題正確完成的概率都是,且每題正確完成與否互不影響.
(1)求甲、乙兩考生正確完成題數(shù)的概率分布列,并計算其數(shù)學期望;
(2)請分析比較甲、乙兩考生的實驗操作能力.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知隨機變量X~B(6,0.4),則當η=-2X+1時,D(η)=(  )
A.-1.88B.-2.88C.5. 76D.6.76

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

隨機變量的分布列如右:其中成等差數(shù)列,若,則的值是    








 

查看答案和解析>>

同步練習冊答案