【題目】電視傳媒公司為了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認為“體育迷“與性別有關(guān)?

非體育迷

體育迷

合計

10

55

合計

【答案】解:由頻率分布直方圖可知,在抽取的100人中,“體育迷”有25人, 故可得列聯(lián)表如下:

非體育迷

體育迷

合計

30

15

45

45

10

55

合計

75

25

100

故可得k2= ≈3.03>2.706,故有90%以上的把握說明“體育迷“與性別有關(guān).
【解析】由頻率分布直方圖可知,“體育迷”有25人,可完成圖表,進而可得得k2的近似值,比對表格可得結(jié)論.
【考點精析】利用頻率分布直方圖對題目進行判斷即可得到答案,需要熟知頻率分布表和頻率分布直方圖,是對相同數(shù)據(jù)的兩種不同表達方式.用緊湊的表格改變數(shù)據(jù)的排列方式和構(gòu)成形式,可展示數(shù)據(jù)的分布情況.通過作圖既可以從數(shù)據(jù)中提取信息,又可以利用圖形傳遞信息.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=的值域是[0,+∞),則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程 (φ為參數(shù)),以O(shè)為極點,x軸的非負半軸為極軸建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程是2ρsin(θ+ )=3 ,射線OM:θ= 與圓C的交點為O、P,與直線l的交點為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們把焦點相同,且離心率互為倒數(shù)的橢圓和雙曲線稱為一對“相關(guān)曲線”.已知F1 , F2是一對相關(guān)曲線的焦點,P是橢圓和雙曲線在第一象限的交點,當(dāng)∠F1PF2=60°時,這一對相關(guān)曲線中橢圓的離心率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】極坐標(biāo)系與直角坐標(biāo)系xOy取相同的長度單位,以原點O為極點,以x軸正半軸為極軸.已知直線l的參數(shù)方程為 為參數(shù)).曲線C的極坐標(biāo)方程為
(1)求直線l的傾斜角和曲線C的直角坐標(biāo)方程;
(2)設(shè)直線C與曲線C交于A,B兩點,與x軸的交點為M,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|,其中a>1
(1)當(dāng)a=2時,求不等式f(x)≥4﹣|x﹣4|的解集;
(2)已知關(guān)于x的不等式|f(2x+a)﹣2f(x)|≤2的解集{x|1≤x≤2},求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1、F2分別是橢圓C: +y2=1的左、右焦點.
(1)若P是第一象限內(nèi)該橢圓上的一點, =﹣ ,求點P的坐標(biāo);
(2)設(shè)過定點M(0,2)的直線l與橢圓交于不同的兩點A,B,且∠AOB為銳角(其中O為坐標(biāo)原點),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 是偶函數(shù),則下列結(jié)論可能成立的是(
A. ??
B.
C. ??
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) ,則下列結(jié)論正確的是(
①f(x)的圖象關(guān)于直線 對稱
②f(x)的圖象關(guān)于點 對稱
③f(x)的圖象向左平移 個單位,得到一個偶函數(shù)的圖象
④f(x)的最小正周期為π,且在 上為增函數(shù).
A.③
B.①③
C.②④
D.①③④

查看答案和解析>>

同步練習(xí)冊答案