(2008•南匯區(qū)二模)已知等比數(shù)列{an}的前n項和Sn=2n-1,則a12+a22+…an2=
1
3
(4n-1)
1
3
(4n-1)
分析:由等比數(shù)列的前n項和可求前幾項,求出首項和公比即可求出數(shù)列的通項公式,由等比數(shù)列的性質(zhì)可知an2也為等比數(shù)列,根據(jù)等比數(shù)列的前n項和的公式
解答:解:a1=S1=1,a2=S2-S1=2,q=2
所以等比數(shù)列的首項為1,公比q為2,
則an=2n-1
則an2=4n-1,是首項為1,公比為4的等比數(shù)列,
所以,則a12+a22+…an2=
1-4n
1-4
=
1
3
(4n-1)

故答案為:
1
3
(4n-1)
點評:此題考查學生會根據(jù)數(shù)列的前n項的和求出等比數(shù)列的通項公式,且會根據(jù)首項和公比求等比數(shù)列的前n項的和
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2008•南匯區(qū)二模)一列火車自A城駛往B城,沿途有n個車站(包括起點站A和終點站B),車上有一節(jié)郵政車廂,每停靠一站便要卸下前面各站發(fā)往該站的郵袋各一個,同時又要裝上該站發(fā)往后面各站的郵袋各一個,試求:
(1)列車從第k站出發(fā)時,郵政車廂內(nèi)共有郵袋數(shù)是多少個?
(2)第幾站的郵袋數(shù)最多?最多是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•南匯區(qū)二模)過定點(1,2)作兩直線與圓x2+y2+kx+2y+k2-15=0相切,則k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•南匯區(qū)二模)(理) 已知(1+x)n=a0+a1x+a2x2+…+anxn,若a0+a1+a2+…+an=16,則自然數(shù)n=
4
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•南匯區(qū)二模)(文) 已知集合M={a,0},N={x|2x2-5x<0,x∈Z},若M∩N≠∅,則a=
1或2
1或2

查看答案和解析>>

同步練習冊答案