如圖,三棱錐底面為正三角形,側面與底面垂直且,已知其主視圖的面積為,則其左視圖的面積為

A.      B.       C.        D.

 

【答案】

B   

【解析】,由題意知,該三棱錐的主視圖為

設底面邊長為,高,則的面積為。又三棱錐的左視圖為直角,在正中,高,所以左視圖的面積為,選B.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,斜三棱柱ABC-A1B1C1,已知側面BB1C1C與底面ABC垂直且∠BCA=90°,∠B1BC=60°,BC=BB1=2,若二面角A-B1B-C為30°.
(Ⅰ)證明:AC⊥平面BB1C1C;
(Ⅱ)求AB1與平面BB1C1C所成角的正切值;
(Ⅲ)在平面AA1B1B內(nèi)找一點P,使三棱錐P-BB1C為正三棱錐,并求P到平面BB1C距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,三棱錐A-BCD的底面為正三角形,側面ABC與底面垂直且 AB=AC,已知其正(主)視圖的面積為2,則其側(左)視圖的面積為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,三棱錐A-BCD是正三棱錐,O為底面BCD的中心,以O為坐標原點,分別以OD、OA為y、z軸建立如圖所示的空間直角坐標系O-xyz,若|
OA
|=|
BC
|=12
,則線段AC的中點坐標是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(04年上海卷)(16分)

如圖,P-ABC是底面邊長為1的正三棱錐,D、E、F分別為棱長PA、PB、PC上的點, 截面DEF∥底面ABC, 且棱臺DEF-ABC與棱錐P-ABC的棱長和相等.(棱長和是指多面體中所有棱的長度之和)

(1)     證明:P-ABC為正四面體;

(2)     若PD=PA, 求二面角D-BC-A的大小;(結果用反三角函數(shù)值表示)

(3)     設棱臺DEF-ABC的體積為V, 是否存在體積為V且各棱長均相等的直

平行六面體,使得它與棱臺DEF-ABC有相同的棱長和? 若存在,請具體構造

出這樣的一個直平行六面體,并給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年上海市長寧區(qū)高三4月教學質量檢測(二模)理科數(shù)學試卷(解析版) 題型:填空題

如圖,在三棱錐中, 、兩兩垂直,且.設是底面內(nèi)一點,定義,其中、分別是三棱錐、 三棱錐、三棱錐的體積.若,且恒成立,則正實數(shù)的最小值為________.

 

查看答案和解析>>

同步練習冊答案