(2013•楊浦區(qū)一模)已知F1、F2為雙曲線C:
x2
4
-y2=1
的左、右焦點(diǎn),點(diǎn)P在C上,∠F1PF2=60°,則P到x軸的距離為( 。
分析:先利用雙曲線的定義及余弦定理,求得P到焦點(diǎn)的距離,再利用雙曲線的第二定義,即可求得結(jié)論.
解答:解:不妨設(shè)點(diǎn)P(x0,y0)在雙曲線的右支上,且|PF1|=m,|PF2|=n,則
m-n=4
20=m2+n2-mn

∴n2+4n-4=0,∴n=2
2
-2
由雙曲線的第二定義可得
n
x0-
4
5
=
5
2
,∴n=
5
2
x0
-2
5
2
x0
-2=2
2
-2
x0=
4
2
5

∴y0=
15
5

故選B.
點(diǎn)評(píng):本題考查雙曲線的標(biāo)準(zhǔn)方程,考查雙曲線的定義,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•楊浦區(qū)一模)橢圓T的中心為坐標(biāo)原點(diǎn)O,右焦點(diǎn)為F(2,0),且橢圓T過(guò)點(diǎn)E(2,
2
).△ABC的三個(gè)頂點(diǎn)都在橢圓T上,設(shè)三條邊的中點(diǎn)分別為M,N,P.
(1)求橢圓T的方程;
(2)設(shè)△ABC的三條邊所在直線的斜率分別為k1,k2,k3,且ki≠0,i=1,2,3.若直線OM,ON,OP的斜率之和為0,求證:
1
k1
+
1
k2
+
1
k3
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•楊浦區(qū)一模)“a=3”是“函數(shù)f(x)=x2-2ax+2在區(qū)間[3,+∞)內(nèi)單調(diào)遞增”的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•楊浦區(qū)一模)若函數(shù)f(x)=3x的反函數(shù)為f-1(x),則f-1(1)=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•楊浦區(qū)一模)若復(fù)數(shù)z=
1-i
i
 (i為虛數(shù)單位),則|z|=
2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案