使n(n∈N+)的展開式中含有常數(shù)項(xiàng)的最小的n為( )
A.4 B.5 C.6 D.7
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 集合、常用邏輯用語(yǔ)、不等式、函數(shù)與導(dǎo)數(shù)(解析版) 題型:填空題
定義在R上的函數(shù)f(x)滿足f(x)=,則f(2 013)=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:填空題
對(duì)大于或等于2的自然數(shù)m的n次方冪有如下分解方式:
22=1+3 23=3+5
32=1+3+5 33=7+9+11
42=1+3+5+7 43=13+15+17+19
52=1+3+5+7+9 53=21+23+25+27+29
根據(jù)上述分解規(guī)律,若m3(m∈N*)的分解中最小的數(shù)是73,則m的值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(jì)(解析版) 題型:解答題
為備戰(zhàn)2016年奧運(yùn)會(huì),甲、乙兩位射擊選手進(jìn)行了強(qiáng)化訓(xùn)練.現(xiàn)分別從他們的強(qiáng)化訓(xùn)練期間的若干次平均成績(jī)中隨機(jī)抽取8次,記錄如下:
甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3
乙:9.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5
(1)畫出甲、乙兩位選手成績(jī)的莖葉圖;
(2)現(xiàn)要從中選派一人參加奧運(yùn)會(huì)封閉集訓(xùn),從統(tǒng)計(jì)學(xué)角度,你認(rèn)為派哪位選手參加合理?簡(jiǎn)單說(shuō)明理由;
(3)若將頻率視為概率,對(duì)選手乙在今后的三次比賽成績(jī)進(jìn)行預(yù)測(cè),記這三次成績(jī)中不低于8.5分的次數(shù)為ξ,求ξ的分布列及均值E(ξ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(jì)(解析版) 題型:選擇題
已知函數(shù)f(x)=x3+ax2+bx+c有兩個(gè)極值點(diǎn)x1,x2,若f(x1)=x1<x2,則關(guān)于x的方程3(f(x))2+2af(x)+b=0的不同實(shí)根個(gè)數(shù)為( )
A.3 B.4 C.5 D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:解答題
(2013·杭州模擬)已知數(shù)列{an}的前n項(xiàng)和Sn=-an-n-1+2(n∈N*),數(shù)列{bn}滿足bn=2nan.
(1)求證數(shù)列{bn}是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)數(shù)列的前n項(xiàng)和為Tn,證明:n∈N*且n≥3時(shí),Tn>.
(3)設(shè)數(shù)列{cn}滿足an(cn-3n)=(-1)n-1λn(λ為非零常數(shù),n∈N*),問是否存在整數(shù)λ,使得對(duì)任意n∈N*,都有cn+1>cn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:填空題
由直線y=2與函數(shù)y=2cos2(0≤x≤2π)的圖象圍成的封閉圖形的面積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 三角函數(shù)、解三角形與平面向量(解析版) 題型:解答題
函數(shù)f(x)=Asin(ωx-)+1(A>0,ω>0)的最大值為3,其圖象相鄰兩條對(duì)稱軸之間的距離為.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)α∈(0,),f()=2,求α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年吉林省延邊州高考復(fù)習(xí)質(zhì)量檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓的一個(gè)頂點(diǎn)為B(0,4),離心率,直線交橢圓于M,N兩點(diǎn)。
(1)若直線的方程為,求弦MN的長(zhǎng);
(2)如果△BMN的重心恰好為橢圓的右焦點(diǎn)F,求直線方程的一般式。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com