如圖, 在矩形中,點(diǎn)分別在線段上,.沿直線翻折成,使平面.
(Ⅰ)求二面角的余弦值;
(Ⅱ)點(diǎn)分別在線段上,若沿直線將四邊形向上翻折,使重合,求線段的長(zhǎng)。
(1);(2)21/4.
本試題主要是考查了立體幾何中的二面角的求解以及折疊圖中的線段的長(zhǎng)度問題。

(Ⅰ)解:取線段EF的中點(diǎn)H,連結(jié)A’H,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823212448291404.png" style="vertical-align:middle;" />=及H是EF的中點(diǎn),所以A’HEF,
又因?yàn)槠矫鍭’EF平面BEF.如圖建立空間直角坐標(biāo)系A(chǔ)-xyz,
則A’(2,2,),C(10,8,0),F(xiàn)(4,0,0),D(10,0,0). 
=(-2,2,),=(6,0,0).
設(shè)=(x,y,z)為平面A’FD的一個(gè)法向量,
       -2x+2y+z=0
所以    6x=0.
,則。又平面BEF的一個(gè)法向量
。  所以二面角的余弦值為
(Ⅱ)解:設(shè)FM=X則M(4+X,0,0),
因?yàn)榉酆螅珻與A重合,所以CM=A’M,
得X=21/4,
經(jīng)檢驗(yàn),此時(shí)點(diǎn)N在線段BC上,所以FM=21/4。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

與直線平行,且到的距離為的直線方程為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)在長(zhǎng)方體中,,用過,三點(diǎn)的平面截去長(zhǎng)方體的一個(gè)角后,留下如圖的幾何體,且這幾何體的體積為120.
(1)求棱的長(zhǎng);
(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在直三棱柱ABCA1B1C1中,AB=BC=,BB1=2,,
E,F分別為AA1C1B1的中點(diǎn),沿棱柱的表面從EF兩點(diǎn)的最短路徑的長(zhǎng)度為(  )
   
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

點(diǎn)到直線的距離是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

點(diǎn)(2,1)到直線3x -4y + 5=0的距離是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)A(2,1),B(5,-1),則=(     )
A.3B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

兩平行直線的距離是                

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

棱長(zhǎng)為的正方體ABCD-A1B1C1D1中,異面直線DD1BC1之間的距離為 (    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案