【題目】已知函數(shù)

(1)若,證明:當(dāng)時(shí),

(2)若只有一個(gè)零點(diǎn),求

【答案】(1)見(jiàn)解析(2)

【解析】分析:(1)先構(gòu)造函數(shù),再求導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)不大于零得函數(shù)單調(diào)遞減,最后根據(jù)單調(diào)性證得不等式,(2)研究零點(diǎn),等價(jià)研究的零點(diǎn),先求導(dǎo)數(shù):,這里產(chǎn)生兩個(gè)討論點(diǎn),一個(gè)是a與零,一個(gè)是x與2,當(dāng)時(shí),,沒(méi)有零點(diǎn);當(dāng)時(shí),先減后增,從而確定只有一個(gè)零點(diǎn)的必要條件,再利用零點(diǎn)存在定理確定條件的充分性,即得a的值.

詳解:(1)當(dāng)時(shí),等價(jià)于

設(shè)函數(shù),則

當(dāng)時(shí),,所以單調(diào)遞減

,故當(dāng)時(shí),,即

(2)設(shè)函數(shù)

只有一個(gè)零點(diǎn)當(dāng)且僅當(dāng)只有一個(gè)零點(diǎn)

(i)當(dāng)時(shí),,沒(méi)有零點(diǎn);

(ii)當(dāng)時(shí),

當(dāng)時(shí),;當(dāng)時(shí),

所以單調(diào)遞減,在單調(diào)遞增

的最小值

①若,即,沒(méi)有零點(diǎn);

②若,即,只有一個(gè)零點(diǎn);

③若,即,由于,所以有一個(gè)零點(diǎn),

由(1)知,當(dāng)時(shí),,所以

有一個(gè)零點(diǎn),因此有兩個(gè)零點(diǎn)

綜上,只有一個(gè)零點(diǎn)時(shí),

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在上的函數(shù)滿(mǎn)足:對(duì)任意的,都有:

1)求證:函數(shù)是奇函數(shù);

2)若當(dāng)時(shí),有,求證:上是減函數(shù);

3)在(2)的條件下解不等式:;

4)在(2)的條件下求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的六面體中,面是邊長(zhǎng)為2的正方形,面是直角梯形,,.

(1)求證:平面

(2)若二面角為60°,求直線(xiàn)和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線(xiàn)的參數(shù)方程是為參數(shù)),以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,直線(xiàn)的極坐標(biāo)方程為.

(1)寫(xiě)出曲線(xiàn)的普通方程和直線(xiàn)的直角坐標(biāo)方程;

(2)設(shè)點(diǎn),直線(xiàn)與曲線(xiàn)相交于兩點(diǎn),且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐A-EFCB中,為等邊三角形,平面AEF平面EFCB,,
,,O為EF的中點(diǎn).
(Ⅰ)求證:
(Ⅱ)求二面角F-AE-B的余弦值;
(Ⅲ)若BE平面AOC,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)是2的正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為AB,A1C的中點(diǎn).應(yīng)用空間向量方法求解下列問(wèn)題.

(1)求EF的長(zhǎng)
(2)證明:EF∥平面AA1D1D;
(3)證明:EF⊥平面A1CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)若,證明:當(dāng)時(shí),

(2)若只有一個(gè)零點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)截圓所得的弦長(zhǎng)為.直線(xiàn)的方程為

(1)求圓的方程;

(2)若直線(xiàn)過(guò)定點(diǎn),點(diǎn)在圓上,且,為線(xiàn)段的中點(diǎn),求點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線(xiàn) =1(a>0,b>0),過(guò)其左焦點(diǎn)F作x軸的垂線(xiàn),交雙曲線(xiàn)于A,B兩點(diǎn),若雙曲線(xiàn)的右頂點(diǎn)在以AB為直徑的圓外,則雙曲線(xiàn)離心率的取值范圍是(
A.(1,
B.(1,2)
C.( ,+∞)
D.(2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案