若在上凸函數(shù)f(x)的圖象上依次取n個(n≥3)點(diǎn)P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),則凸n邊到P1P2P3…Pn的重心G()必在函數(shù)y=f(x)的圖象下方或圖象上.
運(yùn)用上述定義或性質(zhì)證明.
(1)f(x)=lgx在區(qū)間(0,+∞)上是上凸函數(shù);
(2)設(shè)x1,x2,…,xn為正實(shí)數(shù),則.
解析:第(1)小題可根據(jù)上凸函數(shù)的定義證明;?第(2)?小題需要先構(gòu)造一個上凸函數(shù)〔可利用第(1)小題的結(jié)論〕,然后再根據(jù)上凸函數(shù)的性質(zhì)加以證明.
證明:(1)設(shè)x1,x2,…,xn為正實(shí)數(shù),則
f()[f(x1)+f(x2)]=lg (lgx1+lgx2)=lg=lg.
∵x1,x2,…,xn為正實(shí)數(shù),
∴x1+x2≥,即≥1.
又y=f(x)在(0,+∞)上是增函數(shù),∴l(xiāng)g()≥0.
∴f()≥[f(x1)+f(x2)].
根據(jù)定義,函數(shù)y=lgx是區(qū)間(0,+∞)上的上凸函數(shù).
(2)由(1)知,f(x)=lgx在區(qū)間(0,+∞)上是上凸函數(shù).
設(shè)P1(x1,y1),P2(x2,y2),…,Pn(xn,yn)依次是上凸函數(shù)y=lgx上的n個(n≥3)點(diǎn),根據(jù)上凸函數(shù)的性質(zhì),有
[f(x1)+f(x2)+…+f(xn)],
即lg(x1x2…xn),
亦即.
∵y=lgx在(0,+∞)上是增函數(shù),∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 | x-a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044
若在上凸函數(shù)f(x)的圖象上依次取n個(n≥3)點(diǎn)P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),則凸n邊到P1P2P3…Pn的生心G(,)必在函數(shù)y=f(x)的圖象下方或圖象上。
運(yùn)用上述定義或性質(zhì)證明。
(1)f(x)=lgx在區(qū)間(0,+∞)上是上凸函數(shù);
(2)設(shè)x1,x2,…,xn為正實(shí)數(shù),則≥。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:044
定義:若對于給定區(qū)間D內(nèi)任意的實(shí)數(shù)x1和x2都有f()≥[f(x1)+f(x2)],則稱函數(shù)f(x)是區(qū)間D上的上凸函數(shù)。上凸函數(shù)有如下的性質(zhì):
若在上凸函數(shù)f(x)的圖象上依次取n個(n≥3)點(diǎn)P1(x1,y1),P2(x2,y2),…,Pn(xn,yn),則凸n邊到P1P2P3…Pn的生心G(,)必在函數(shù)y=f(x)的圖象下方或圖象上。
運(yùn)用上述定義或性質(zhì)證明。
(1)f(x)=lgx在區(qū)間(0,+∞)上是上凸函數(shù);
(2)設(shè)x1,x2,…,xn為正實(shí)數(shù),則≥。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com