如果數(shù)據(jù)x1,x2,x3,…,xn的平均數(shù)為
.
x
,標(biāo)準(zhǔn)差為S,則數(shù)據(jù)3x1+2,3x2+2,3x3+2,…,3xn+2的平均數(shù)和標(biāo)準(zhǔn)差分別是( 。
A、3
.
x
和9S
B、3
.
x
和3S
C、3
.
x
+2和9S
D、3
.
x
+2和3S
考點(diǎn):極差、方差與標(biāo)準(zhǔn)差
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:利用平均數(shù)和標(biāo)準(zhǔn)差的性質(zhì)求解.
解答: 解:∵x1,x2,x3,…,xn的平均數(shù)為
.
x
,
∴x1+x2+x3+…+xn=n
.
x
,
∴樣本3x1+2,3x2+2,3x3+2,…,3xn+2的平均數(shù)為3
.
x
+2,
∵x1,x2,x3,…,xn的標(biāo)準(zhǔn)差為S,
∴3x1+2,3x2+2,3x3+2,…,3xn+2的標(biāo)準(zhǔn)差是3S.
故選D.
點(diǎn)評:本題考查平均數(shù)和方差的變換特點(diǎn),若在原來數(shù)據(jù)前乘以同一個(gè)數(shù),平均數(shù)也乘以同一個(gè)數(shù),而方差要乘以這個(gè)數(shù)的平方,在數(shù)據(jù)上同加或減同一個(gè)數(shù),方差不變.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理科)梯形ABCD的直觀圖是一個(gè)等腰梯形A1B1C1D1,等腰梯形A1B1C1D1的底角為
π
4
且面積為
2
,則梯形ABCD的面積為(  )
A、4
B、2
2
C、2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①若命題“p或q為真命題,則命題p或命題q均為真命題”
②命題p:?x∈R,sinx≤1.則¬p:?x0∈R,使sinx0>1;
③已知函數(shù)f′(x)是函數(shù)f(x)在R上的導(dǎo)數(shù),若f(x)為偶函數(shù),則f′(x)是奇函數(shù);
④已知x
I
R,則“x>1”是“x>2”的充分不必要條件;
其中真命題的個(gè)數(shù)是( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|-1≤x≤2},集合B={x|x≤a},且A?B,則實(shí)數(shù)a的取值范圍是(  )
A、{a|a>2}
B、{a|a<-1}
C、{a|a≤-1}
D、{a|a≥2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=
3
cosx+sinx(x∈R)的圖象向左平移
π
6
個(gè)長度單位后,所得到的圖象關(guān)于( 。⿲ΨQ.
A、y軸
B、原點(diǎn)(0,0)
C、直線x=
π
3
D、點(diǎn)(
6
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡
sin(
π
2
+α)cos(3π-α)tan(π+α)
cos(
π
2
-α)cos(-α-π)
的結(jié)果是( 。
A、1B、-1
C、sinαD、-sinα

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p1:若函數(shù)f(x)=
1
x-a
在(-∞,0)上為減函數(shù),則a∈(-∞,0);命題p2:x∈(-
π
2
,
π
2
)是f(x)=tanx為增函數(shù)的必要不充分條件;命題p3:“a為常數(shù),?x∈R,f(x)=a2x2+ax+1>0”的否定是“a為變量,?x∈R,f(x)=a2x2+ax+1≤0”.以上三個(gè)命題中,真命題的個(gè)數(shù)是( 。
A、3B、2C、0D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有驅(qū)蟲藥1618和1573各3杯,從中隨機(jī)取出3杯稱為一次試驗(yàn)(假定每杯被取到的概率相等),將1618全部取出稱為試驗(yàn)成功.
(1)求一次試驗(yàn)成功的概率.
(2)求恰好在第3次試驗(yàn)成功的概率(要求將結(jié)果化為最簡分?jǐn)?shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間(0,10)中隨機(jī)地取出兩個(gè)數(shù)x和y,求兩數(shù)之和小于5的概率.

查看答案和解析>>

同步練習(xí)冊答案