精英家教網 > 高中數學 > 題目詳情

【題目】已知服從正態(tài)分布的隨機變量在區(qū)間,內取值的概率分別為0.6826,0.9544,0.9974.若某種袋裝大米的質量(單位:)服從正態(tài)分布,任意選一袋這種大米,質量在的概率為_

【答案】0.8185

【解析】

根據正態(tài)分布曲線的性質得到質量在49.8kg50.2kg之間的大米概率為0.9544,則小于49.8kg的大米的概率為,質量在49.9kg50.1kg的大米的概率為0.6826,故質量大于50.1kg的大米的概率為,讓1減去這些概率之和得到結果.

根據題意得到質量在49.8kg50.2kg之間的大米概率為0.9544,則小于49.8kg的大米的概率為;質量在49.9kg50.1kg的大米的概率為0.6826,故質量大于50.1kg的大米的概率為.故質量在的概率為

故答案為:0.8185.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】我國古代數學名著《九章算術》中,將底面為直角三角形且側棱垂直于底面的三棱柱稱之為塹堵;將底面為矩形且一側棱垂直于底面的四棱錐稱之為陽馬;將四個面均為直角三角形的四面體稱之為鱉臑[biē nào].某學?茖W小組為了節(jié)約材料,擬依托校園內垂直的兩面墻和地面搭建一個塹堵形的封閉的實驗室是邊長為2的正方形.

1)若是等腰三角形,在圖2的網格中(每個小方格都是邊長為1的正方形)畫出塹堵的三視圖;

2)若上,證明:,并回答四面體是否為鱉臑,若是,寫出其每個面的直角(只需寫出結論);若不是,請說明理由;

3)當陽馬的體積最大時,求點到平面的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,其中為正實數.

)若是函數的極值點,討論函數的單調性;

)若上無最小值,且上是單調增函數,求的取值范圍,并由此判斷曲線與曲線交點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對某校高一年級學生參加社區(qū)服務次數進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數.根據此數據作出了頻數與頻率的統(tǒng)計表和頻率分布直方圖如下:

分組

頻數

頻率

[10,15)

10

0.25

[15,20)

25

n

[20,25)

m

p

[25,30)

2

0.05

合計

M

1

(1)求出表中M,p及圖中a的值;

(2)若該校高一學生有360人,試估計該校高一學生參加社區(qū)服務的次數在區(qū)間[15,20)內的人數;

(3)在所取樣本中,從參加社區(qū)服務的次數不少于20次的學生中任選2人,請列舉出所有基本事件,并求至多1人參加社區(qū)服務次數在區(qū)間[20,25)內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某區(qū)選派7名隊員代表本區(qū)參加全市青少年圍棋錦標賽,其中3名來自A學校且1名為女棋手,另外4名來自B學校且2名為女棋手從這7名隊員中隨機選派4名隊員參加第一階段的比賽

求在參加第一階段比賽的隊員中,恰有1名女棋手的概率;

X為選出的4名隊員中AB兩校人數之差的絕對值,求隨機變量X的分布列和數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,,…,等10所高校舉行自主招生考試,某同學參加每所高校的考試獲得通過的概率均為.

(1)如果該同學10所高校的考試都參加,恰有所通過的概率為,當為何值時,取得最大值;

(2)若,該同學參加每所高?荚囁璧馁M用均為元,該同學決定按,,…,順序參加考試,一旦通過某所高校的考試,就不再參加其它高校的考試,否則,繼續(xù)參加其它高校的考試,求該同學參加考試所需費用的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程

在直角坐標系中,曲線的參數方程為為參數),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)求曲線的普通方程與曲線的直角坐標方程;

(2)若交于兩點,點的極坐標為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}的前n項和

1)求數列{an}的通項公式an;

2)設數列{bn}的前n項和為Tn,滿足b11,

①求數列{bn}的通項公式bn

②若存在p,qkN*,pqk,使得ambq,amanbp,anbk成等差數列,求m+n的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓x2+y2=8內有一點P0-1,2),AB為過點P0且傾斜角為α的弦.

1)當α=時,求AB的長;

2)當弦AB被點P0平分時,寫出直線AB的方程(用直線方程的一般式表示)

查看答案和解析>>

同步練習冊答案