在圓x2+y2-2x+6y=0內(nèi),過點(diǎn)E(0,-1)的最長(zhǎng)弦和最短弦分別為AB和CD,則
(Ⅰ)AB的長(zhǎng)為    ;
(Ⅱ)CD的長(zhǎng)為   
【答案】分析:(Ⅰ)把圓的方程化為標(biāo)準(zhǔn)方程后,求出圓心坐標(biāo)與圓的半徑,根據(jù)圖形可知,過點(diǎn)E最長(zhǎng)的弦為直徑AB;
(Ⅱ)最短的弦為過E與直徑AB垂直的弦CD,根據(jù)兩點(diǎn)間的距離公式求出弦心距,結(jié)合半徑根據(jù)勾股定理CD.
解答:解:(Ⅰ)把圓的方程化為標(biāo)準(zhǔn)方程得:(x-1)2+(y+3)2=10,
則圓心坐標(biāo)為(1,-3),半徑為,
根據(jù)題意畫出圖象,如圖所示:
由圖象可知:過點(diǎn)E最長(zhǎng)的弦為直徑AC,最短的弦為過E與直徑AB垂直的弦,
則AB=2,
(Ⅱ)MB=,弦心距ME==,
所以CD=2BE=2=2
故答案為:(1)2;(2)2
點(diǎn)評(píng):此題考查學(xué)生掌握垂徑定理及勾股定理的應(yīng)用,靈活運(yùn)用兩點(diǎn)間的距離公式化簡(jiǎn)求值,是一道中檔題.考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在圓x2+y2-2x-6y=0內(nèi),過點(diǎn)E(0,1)的最長(zhǎng)弦和最短弦分別為AC和BD,則四邊形ABCD的面積為( 。
A、5
2
B、10
2
C、15
2
D、20
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在圓x2+y2-2x-6y=0內(nèi),過點(diǎn)E(0,1)的最短弦AB,則AB=
2
5
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在圓x2+y2-2x-6y=0內(nèi),過點(diǎn)E(0,1)的最長(zhǎng)弦和最短弦分別是AC和BD,則四邊形ABCD的面積為
10
2
10
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P(x,y)在圓x2+y2-2x-2y+1=0上,則
y+1
x+1
的最小值為
1
3
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在圓x2+y2-2x+6y=0內(nèi),過點(diǎn)E(0,-1)的最長(zhǎng)弦和最短弦分別為AB和CD,則
(Ⅰ)AB的長(zhǎng)為
2
10
2
10
;
(Ⅱ)CD的長(zhǎng)為
2
5
2
5

查看答案和解析>>

同步練習(xí)冊(cè)答案