【題目】如圖,在三棱柱中,平面,的中點(diǎn),,,.

(Ⅰ)求證:平面;

(Ⅱ)求平面與平面所成銳二面角的平面角的余弦值.

【答案】(Ⅰ)證明見(jiàn)解析,(Ⅱ)

【解析】

)連結(jié)于點(diǎn),連結(jié),可知,根據(jù)線面平行的判定定理,證明即可.

)法一: ,,可知,即,根據(jù)平面,可知平面,即,以為原點(diǎn),,,所在直線分別為,, 軸,建立空間直角坐標(biāo)系,求各點(diǎn)坐標(biāo),計(jì)算平面的法向量為,平面的法向量為,根據(jù),求解即可. 法二:延長(zhǎng)、交于,連接,過(guò),過(guò),連接,則平面,又,所以平面,為平面與平面所成銳二面角的平面角. ,,計(jì)算

,,利用,求解,即可.

)證明:連結(jié)于點(diǎn),連結(jié).

中點(diǎn),中位線.

所以.

平面,平面.

所以平面.

)法一:因?yàn)?/span>的中點(diǎn),所以.

又因?yàn)?/span>,所以,則

,所以.

又因?yàn)?/span>平面,所以建立如圖所示空間直角坐標(biāo)系,則,,,.

平面的法向量為.

設(shè)平面的法向量為,則由,,得

,則.

所以平面與平面所成的銳二面角的余弦值為.

法二:延長(zhǎng)、交于,連接,過(guò),

過(guò),連接,

平面,,又,所以平面,

為平面與平面所成銳二面角的平面角.

中,,所以高為中線,,

,∴,∴

中,,

,∴

中,,

所以平面與平面所成銳二面角的平面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分12分)

已知函數(shù)是奇函數(shù),的定義域?yàn)?/span>.當(dāng)時(shí), .(e為自然對(duì)數(shù)的底數(shù)).

(1)若函數(shù)在區(qū)間上存在極值點(diǎn),求實(shí)數(shù)的取值范圍;

(2)如果當(dāng)x≥1時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形ABCP中,,,DAP的中點(diǎn),E,G,F分別為PC、CBPD的中點(diǎn),將沿CD折起,使得二面角為直二面角.

1)證明:平面EFG;

2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為了鼓勵(lì)運(yùn)動(dòng)提高所有用戶(hù)的身體素質(zhì),特推出一款運(yùn)動(dòng)計(jì)步數(shù)的軟件,所有用戶(hù)都可以通過(guò)每天累計(jì)的步數(shù)瓜分紅包,大大增加了用戶(hù)走步的積極性,所以該軟件深受廣大用戶(hù)的歡迎.該公司為了研究“日平均走步數(shù)和性別是否有關(guān)”,統(tǒng)計(jì)了20191月份所有用戶(hù)的日平均步數(shù),規(guī)定日平均步數(shù)不少于8000的為“運(yùn)動(dòng)達(dá)人”,步數(shù)在8000以下的為“非運(yùn)動(dòng)達(dá)人”,采用按性別分層抽樣的方式抽取了100個(gè)用戶(hù),得到如下列聯(lián)表:

運(yùn)動(dòng)達(dá)人

非運(yùn)動(dòng)達(dá)人

總計(jì)

35

60

26

總計(jì)

100

1)(i)將列聯(lián)表補(bǔ)充完整;

ii)據(jù)此列聯(lián)表判斷,能否有的把握認(rèn)為“日平均走步數(shù)和性別是否有關(guān)”?

2)將頻率視作概率,從該公司的所有人“運(yùn)動(dòng)達(dá)人”中任意抽取3個(gè)用戶(hù),求抽取的用戶(hù)中女用戶(hù)人數(shù)的分布列及期望.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)當(dāng)時(shí),,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,三棱柱中,平面,點(diǎn),分別在線段,上,且,是線段的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)若,,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,是橢圓的左右焦點(diǎn),且橢圓的離心率為,直線與橢圓交于,兩點(diǎn),當(dāng)直線過(guò)時(shí)周長(zhǎng)為8.

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)若,是否存在定圓,使得動(dòng)直線與之相切,若存在寫(xiě)出圓的方程,并求出的面積的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《周髀算經(jīng)》中給出了勾股定理的絕妙證明.如圖是趙爽弦圖及注文.弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱(chēng)為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成朱色及黃色,其面積稱(chēng)為朱實(shí)、黃實(shí).×+(股-勾)2=4×朱實(shí)+黃實(shí)=弦實(shí),化簡(jiǎn)得勾2+2=2.若圖中勾股形的勾股比為,向弦圖內(nèi)隨機(jī)拋擲100顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘顆數(shù)大約為( )(參考數(shù)據(jù):

A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在幾何體中,,直角梯形中,,且,且.

1)求證:平面平面;

2)若直線與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案