已知向量=(1,2),=(0,1),則下列各點中在直線AB上的點是     (    )

A.(0,3)         B.(1,1)         C.(2,4)      D.(2,5)

 

【答案】

D

【解析】試題分析:∵=(1,2),=(0,1)∴A(-1,-1),B(0,1)

由直線的兩點式方程得直線AB的方程為:即:

又∵,∴點(2,5)在直線AB上.

考點:平面向量的坐標(biāo)表示、兩點式直線方程。

點評:向量的坐標(biāo)等于終點坐標(biāo)減去始點坐標(biāo)。本題注意O是坐標(biāo)原點這一隱含條件。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(x,2),則向量
a
+2
b
與2
a
-
b
(  )
A、垂直的必要條件是x=-2
B、垂直的充要條件是x=
7
2
C、平行的充分條件是x=-2
D、平行的充要條件是x=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(x,1),若
a
b
,則實數(shù)x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(sinθ,cosθ),θ∈(0,π).
(1)若
a
b
,求sinθ及cosθ;
(2)若
a
.
b
,求tan2θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(2,-2).
(1)設(shè)
c
=4
a
+
b
,求(
b
c
a
;
(2)若
a
b
a
垂直,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(cosα,sinα)
,設(shè)
m
=
a
+t
b
(t為實數(shù)).
(1)若
a
b
共線,求tanα的值;
(2)若α=
π
4
,求當(dāng)|
m
|取最小值時實數(shù)t的值.

查看答案和解析>>

同步練習(xí)冊答案