設(shè)f(x)=x3-
x22
-2x+a,
(1)求函數(shù)f(x)的單調(diào)遞增、遞減區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[-1,2]上的最大值與最小值的和為5,求實(shí)數(shù)a的值.
分析:(1)求出函數(shù)的導(dǎo)函數(shù),解出函數(shù)的零點(diǎn),由導(dǎo)函數(shù)的零點(diǎn)對函數(shù)的定義域分段,判斷導(dǎo)函數(shù)在各區(qū)間段內(nèi)的符號,從而得出原函數(shù)的單調(diào)區(qū)間;
(2)由(1)求出的函數(shù)的單調(diào)區(qū)間,分析函數(shù)在區(qū)間[-1,2]上的單調(diào)性,從而求出函數(shù)在區(qū)間[-1,2]上的極值進(jìn)而得到函數(shù)在區(qū)間[-1,2]上的最值,把求出的最值求和值為5,即可求得a的值.
解答:解:(1)f'(x)=3x2-x-2=(3x+2)(x-1)…(2分)
令f′(x)=0,得x=-
2
3
或x=1
當(dāng)x<-
2
3
或x>1時,f′(x)>0; 當(dāng)-
2
3
<x<1
時,f′(x)<0…(4分)
所以,函數(shù)f(x)的單調(diào)遞增區(qū)間是(-∞,-
2
3
]
,[1,+∞);…(6分)
函數(shù)f(x)的單調(diào)遞減區(qū)間是[-
2
3
,1
]…(7分)
(2)由(1)知,f(x)在區(qū)間[-1,2]上的極大值為f(-
2
3
)=
22
27
+a

極小值為f(1)=-
3
2
+a
,…(9分)
f(-1)=
1
2
+a
,f(2)=2+a
所以,f(x)在[-1,2]上的最大值為f(2)=2+a,最小值為f(1)=-
3
2
+a
,…(12分)
由題意得,(2+a)+(-
3
2
+a)=5
,∴a=
9
4
…(14分)
點(diǎn)評:本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,訓(xùn)練了利用導(dǎo)數(shù)求函數(shù)在閉區(qū)間上的最值的方法,
求函數(shù)在閉區(qū)間上的最值,應(yīng)比較極值與端點(diǎn)值.此題是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、設(shè)f(x)=x3+x-8,現(xiàn)用二分法求方程x3+x-8=0在區(qū)間(1,2)內(nèi)的近似解,計算得f(1)<0,f(1.5)<0,f(1.75)<0,f(2)>0,則方程的根所在的區(qū)間是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x3+ax2+bx+c,又k是一個常數(shù),已知當(dāng)k<0或k>4時,f(x)-k=0只有一個實(shí)根,當(dāng)0<k<4時,f(x)-k=0有三個相異實(shí)根,現(xiàn)給出下列命題:
(1)f(x)-4=0和f′(x)=0有且只有一個相同的實(shí)根.
(2)f(x)=0和f′(x)=0有且只有一個相同的實(shí)根.
(3)f(x)+3=0的任一實(shí)根大于f(x)-1=0的任一實(shí)根.
(4)f(x)+5=0的任一實(shí)根小于f(x)-2=0的任一實(shí)根.
其中錯誤命題的個數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•韶關(guān)一模)設(shè)f(x)在區(qū)間I上有定義,若對?x1,x2∈I,都有f(
x1+x2
2
)≥
f(x1)+f(x2)
2
,則稱f(x)是區(qū)間I的向上凸函數(shù);若對?x1,x2∈I,都有f(
x1+x2
2
)≤
f(x1)+f(x2)
2
,則稱f(x)是區(qū)間I的向下凸函數(shù),有下列四個判斷:
①若f(x)是區(qū)間I的向上凸函數(shù),則-f(x)在區(qū)間I的向下凸函數(shù);
②若f(x)和g(x)都是區(qū)間I的向上凸函數(shù),則f(x)+g(x)是區(qū)間I的向上凸函數(shù);
③若f(x)在區(qū)間I的向下凸函數(shù),且f(x)≠0,則
1
f(x)
是區(qū)間I的向上凸函數(shù);
④若f(x)是區(qū)間I的向上凸函數(shù),?x1,x2,x3,x4∈I,則有f(
x1+x2+x3+x4
4
)≥
f(x1)+f(x2)+f(x3)+f(x4)
4

其中正確的結(jié)論個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•朝陽區(qū)二模)已知函數(shù)f(x)=x3-
3
2
mx2+n
,1<m<2
(Ⅰ)若f(x)在區(qū)間[-1,1]上的最大值為1,最小值為-2,求m、n的值;
(Ⅱ)在(Ⅰ)的條件下,求經(jīng)過點(diǎn)P(2,1)且與曲線f(x)相切的直線l的方程;
(Ⅲ)設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為g(x),函數(shù)F(x)=
g(x)+3x+1
6
e2x
,試判斷函數(shù)F(x)的極值點(diǎn)個數(shù),并求出相應(yīng)實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當(dāng)x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)由小到大構(gòu)成一個無窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數(shù)為( 。

查看答案和解析>>

同步練習(xí)冊答案