【題目】下圖為一簡單組合體,其底面ABCD為正方形,平面,,且=2 .
(1)在答題卷指定的方框內(nèi)已給出了該幾何體的俯視圖,請?jiān)诜娇騼?nèi)畫出該幾何體的正(主)視圖和側(cè)(左)視圖;
(2)求證:平面.
(3)求四棱錐B-CEPD的體積;
【答案】(1)詳見解析(2)詳見解析(3)2
【解析】
試題分析:(1)按照三視圖所在的平面兩兩垂直,看不見的線用虛線,看得見的用實(shí)線畫出;(2)由EC∥PD,得EC∥平面PDA,同時(shí),有BC∥平面PDA,因?yàn)?/span>EC平面EBC,BC平面EBC且EC∩BC=C,得到平面BEC∥平面PDA,進(jìn)而有BE∥平面PDA;(3)由PD⊥平面ABCD,PD平面PDCE,得到平面PDCE⊥平面ABCD,因?yàn)?/span>BC⊥CD所以BC⊥平面PDCE,從而有BC為高,然后求得底的面積,最后由棱錐體積公式求解.
試題解析:(1)該組合體的主視圖和側(cè)視圖如右圖示:-----2分
(3) 證明:∵,平面, 平面
∴EC//平面,
同理可得BC//平面
∵EC平面EBC,BC平面EBC且
∴平面//平面
又∵BE平面EBC ∴BE//平面PDA
(2)∵平面,平面
∴平面平面ABCD
∵ 又
∴BC平面
∵
∴四棱錐B-CEPD的體積
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某服裝制造商現(xiàn)有300m2的棉布料,900m2的羊毛料,和600 m2的絲綢料。做一條大衣需要1m2的棉布料,5m2的羊毛料,1m2的絲綢料.做一條褲子需要1m2的棉布料,2m2的羊毛料,1m2的絲綢料。
(1)在此基礎(chǔ)上生產(chǎn)這兩種服裝,列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并在直角坐標(biāo)系中畫出相應(yīng)的平面區(qū)域。
(2)若生產(chǎn)一條大衣的純收益是120元,生產(chǎn)一條褲子的純收益是80元,那么應(yīng)采用哪種生產(chǎn)安排,該服裝制造商能獲得最大的純收益;最大收益是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象過點(diǎn),且在點(diǎn)處的切線方程.
(1)求函數(shù)的解析式;
(2)求函數(shù)與的圖象有三個(gè)交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三年級一次數(shù)學(xué)考試后,為了解學(xué)生的數(shù)學(xué)學(xué)習(xí)情況,隨機(jī)抽取名學(xué)生的數(shù)學(xué)成績,制成表所示的頻率分布表.
組號(hào) | 分組 | 頻數(shù) | 頻率 |
第一組 | |||
第二組 | |||
第三組 | |||
第四組 | |||
第五組 | |||
合計(jì) |
(1)求、、的值;
(2)若從第三、四、五組中用分層抽樣方法抽取名學(xué)生,并在這名學(xué)生中隨機(jī)抽取名學(xué)生與張老師面談,求第三組中至少有名學(xué)生與張老師面談的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求曲線在點(diǎn)處的切線方程;
(2)若,求在區(qū)間 上的最小值;
(3)若函數(shù)有兩個(gè)極值點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,點(diǎn),角的內(nèi)角平分線所在直線的方程為邊上的高所在直線的方程為.
(Ⅰ) 求點(diǎn)的坐標(biāo);
(Ⅱ) 求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為1的正方形,,,且,為的中點(diǎn).
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,過點(diǎn)的直線與拋物線相交于點(diǎn),兩點(diǎn),設(shè),
(1)求證:為定值
(2)是否存在平行于軸的定直線被以為直徑的圓截得的弦長為定值?如果存在,求出該直線方程和弦長,如果不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(1)若函數(shù)在區(qū)間上是減函數(shù),求實(shí)數(shù)的取值范圍;
(2)設(shè)函數(shù),當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com