稱滿足以下兩個條件的有窮數(shù)列階“期待數(shù)列”:

;②.

(1)若等比數(shù)列階“期待數(shù)列”,求公比q及的通項公式;

(2)若一個等差數(shù)列既是階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項公式;

(3)記n階“期待數(shù)列”的前k項和為

(i)求證:;

(ii)若存在使,試問數(shù)列能否為n階“期待數(shù)列”?若能,求出所有這樣的數(shù)列;若不能,請說明理由.

 

【答案】

(1)

(2);

(3)(i)證明見解析;(ii)不能,證明見解析.

【解析】

試題分析:(1)數(shù)列中等比數(shù)列,因此是其前和,故利用前前項和公式,分進行討論,可很快求出;(2)階等差數(shù)列是遞增數(shù)列,即公差,其和為0,故易知數(shù)列前面的項為負,后面的項為正,即前項為正,后項為正,因此有,,這兩式用基本量或直接相減可求得,,因此通項公式可得;(3)(i)我們只要把數(shù)列中所有非負數(shù)項的和記為,所有負數(shù)項的記為,則,不可能比小,同樣不可能比大,即,得證;(ii)若,則一定有,,且,若數(shù)列為n階“期待數(shù)列”,設(shè)其前項和為,首先,而,,因此,即,從而,于是,那么,矛盾出現(xiàn)了,故結(jié)論是否定的.

試題解析:(1)①若,由①得,,得,矛盾.     1分

,則由①=0,得,     3分

由②得

所以,.數(shù)列的通項公式是

            4分

(2)設(shè)等差數(shù)列的公差為,>0.

,∴,∴

>0,由,,

由①、②得,,     6分

兩式相減得,,  ∴

,得,

∴數(shù)列的通項公式是.  9分

(3)記中所有非負項的和為A,所有負數(shù)項的和為B,

,,解得

(i),即.         12分

(ii)若存在,使,由前面的證明過程知:

,         14分

如果階“期待數(shù)列”,

記數(shù)列的前項和為,

則由(i)知,,

,而

,從而,,

,

,         16分

,

不能同時成立,

所以,對于有窮數(shù)列,若存在使,則數(shù)列的和數(shù)列不能為階“期待數(shù)列”.         18分

考點:(1)等比數(shù)列的前和公式與通項公式;(2)等差數(shù)列的前和公式與通項公式;(3)數(shù)列綜合題.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

將所有平面向量組成的集合記作R2,f是從R2到R2的映射,記作
y
=f(
x
)
或(y1,y2)=f(x1,x2),其中x1,x2,y1,y2都是實數(shù).定義映射f的模為:在|
x
|=1的條件下|
y
|的最大值,記做||f||.若存在非零向量
x
R2,及實數(shù)λ使得f(
x
)=λ
x
,則稱λ為f的一個特征值.
(1)若f(x1,x2)=(
1
2
x1,x2),求||f||;
(2)如果f(x1,x2)=(x1+x2,x1-x2),計算f的特征值,并求相應(yīng)的
x
;
(3)若f(x1,x2)=(a1x1+a2x2,b1x1+b2x2),要使f有唯一的特征值,實數(shù)a1,a2,b1,b2應(yīng)滿足什么條件?試找出一個映射f,滿足以下兩個條件:①有唯一的特征值λ,②||f||=|λ|,并驗證f滿足這兩個條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)同時滿足以下兩個條件:①f(x)在其定義域上是單調(diào)函數(shù);②在f(x)的定義域內(nèi)存在區(qū)間[a,b],使得f(x)在[a,b]上的值域是[a,b].則稱函數(shù)f(x)為“自強”函數(shù).
(1)判斷函數(shù)f(x)=2x-1是否為“自強”函數(shù)?若是,則求出a,b若不是,說明理由;
(2)若函數(shù)f(x)=
2x-1
+t是“自強”函數(shù),求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

稱滿足以下兩個條件的有窮數(shù)列a1,a2,…an為n(n=2,3,4,…)階“期待數(shù)列”:①a1+a2+a3+…+an=0; ②|a1|+|a2|+|a3|+…+|an|=1.
(1)若數(shù)列{an}的通項公式是an=
1
2014
•sin
(2n-1)π
2
(n=1,2,…2014),試判斷數(shù)列{an}是否為2014階“期待數(shù)列”,并說明理由;
(2)若等比數(shù)列{bn}為2k(k∈N*)階“期待數(shù)列”,求公比q及數(shù)列{bn}的通項公式;
(3)若一個等差數(shù)列{cn}既是2k(k∈N*)階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年上海市徐匯區(qū)高三上學期期末考試(一模)文科數(shù)學試卷(解析版) 題型:解答題

稱滿足以下兩個條件的有窮數(shù)列階“期待數(shù)列”:

;②.

(1)若數(shù)列的通項公式是,

試判斷數(shù)列是否為2014階“期待數(shù)列”,并說明理由;

(2)若等比數(shù)列階“期待數(shù)列”,求公比q及的通項公式;

(3)若一個等差數(shù)列既是階“期待數(shù)列”又是遞增數(shù)列,求該數(shù)列的通項公式;

 

查看答案和解析>>

同步練習冊答案