【題目】在△ABC中,
(1)求A的大;
(2)若a=10,b=8,求△ABC的面積S.
【答案】(1) ;(2)8.
【解析】試題分析:(1)根據(jù)正弦定理得到,將式子變形為sin Bcos A=sin(A+C)=sinB,進而得到角A。(2)由余弦定理得到c=14或c=2,再根據(jù)面積公式得到結(jié)果。
解析:
(1)由正弦定理,得
所以sin Bcos A=cos Csin A+sin Ccos A,
即sin Bcos A=sin(A+C)=sinB.
因為B∈(0,π),所以sin B≠0.
所以cos A=.
因為A∈(0,π),所以A=.
(2)由余弦定理及a=10,b=8,得
102=(8)2+c2-2×8×c.
解之得c=14或c=2.
所以S=bcsin A=56或S=bcsin A=8.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(其中為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為(其中為常數(shù)).
(1)若直線與曲線恰好有一個公共點,求實數(shù)的值;
(2)若,求直線被曲線截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的極坐標方程是ρ=2,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為(t為參數(shù)).
(1)寫出直線l的普通方程與曲線C的直角坐標方程;
(2)設(shè)曲線C經(jīng)過伸縮變換得到曲線,設(shè)M(x,y)為上任意一點,求的最小值,并求相應(yīng)的點M的坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856263)
已知拋物線y2=2px(p>0)的準線與x軸交于點N,過點N作圓M:(x-2)2+y2=1的兩條切線,切點為P、Q,且|PQ|=.
(Ⅰ)求拋物線的方程;
(Ⅱ)過拋物線的焦點F作斜率為k1的直線與拋物線交于A、B兩點,A、B兩點的橫坐標均不為2,連接AM,BM并延長分別交拋物線于C、D兩點,設(shè)直線CD的斜率為k2,問是否為定值?若是,求出該定值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知.
(1)求C;
(2)若c=,△ABC的面積為,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年1月,某國宣布成功進行氫彈試驗后,A,B,C,D四國領(lǐng)導(dǎo)人及聯(lián)合國主席紛紛表示譴責,就此,某電視臺特別邀請一軍事專家對這一事件進行評論,若該軍事專家計劃從A,B,C,D四國及聯(lián)合國主席這5個領(lǐng)導(dǎo)人中任選2人的發(fā)言態(tài)度進行評論,那么,他評論的這2人中至少包括A、B一國領(lǐng)導(dǎo)人的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856288)
設(shè)函數(shù)f(x)=aln x-x,g(x)=aex-x,其中a為正實數(shù).
(Ⅰ)若f(x)在(1,+∞)上是單調(diào)減函數(shù),且g(x)在(2,+∞)上有最小值,求a的取值范圍;
(Ⅱ)若函數(shù)f(x)與g(x)都沒有零點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|2x+1|﹣|2x﹣3|,g(x)=|x+1|+|x﹣a|.
(l)求f(x)≥1的解集;
(2)若對任意的t∈R,s∈R,都有g(s)≥f(t).求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(導(dǎo)學(xué)號:05856331)
甲、乙兩家快餐店對某日7個時段的光顧的客人人數(shù)進行統(tǒng)計并繪制莖葉圖如下圖所示(下面簡稱甲數(shù)據(jù)、乙數(shù)據(jù)),且乙數(shù)據(jù)的眾數(shù)為17,甲數(shù)據(jù)的平均數(shù)比乙數(shù)據(jù)平均數(shù)少2.
(Ⅰ)求a,b的值,并計算乙數(shù)據(jù)的方差;
(Ⅱ)現(xiàn)從乙數(shù)據(jù)中不大于16的數(shù)據(jù)中隨機抽取兩個,求至少有一個數(shù)據(jù)小于10的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com