【題目】某景區(qū)修建一棟復(fù)古建筑,其窗戶設(shè)計(jì)如圖所示.圓的圓心與矩形對(duì)角線的交點(diǎn)重合,且圓與矩形上下兩邊相切(為上切點(diǎn)),與左右兩邊相交(為其中兩個(gè)交點(diǎn)),圖中陰影部分為不透光區(qū)域,其余部分為透光區(qū)域.已知圓的半徑為1,且,設(shè),透光區(qū)域的面積為.

(1)求關(guān)于的函數(shù)關(guān)系式,并求出定義域;

(2)根據(jù)設(shè)計(jì)要求,透光區(qū)域與矩形窗面的面積比值越大越好.當(dāng)該比值最大時(shí),求邊的長度.

【答案】(1)關(guān)于的函數(shù)關(guān)系式為,定義域?yàn)?/span>;

(2)透光區(qū)域與矩形窗面的面積比值最大時(shí),的長度為1

【解析】試題分析:

(1) 過點(diǎn)于點(diǎn),可得關(guān)于的函數(shù)關(guān)系式為,定義域?yàn)?/span>;

(2)由原函數(shù)與導(dǎo)函數(shù)的關(guān)系可得當(dāng)時(shí),有最大值,此時(shí)

試題解析:

解:(1) 過點(diǎn)于點(diǎn),則,

所以

所以

,

因?yàn)?/span>,所以,所以定義域?yàn)?/span>

(2)矩形窗面的面積為

則透光區(qū)域與矩形窗面的面積比值為

設(shè)

,

因?yàn)?/span>,所以,所以,故,

所以函數(shù)上單調(diào)減.

所以當(dāng)時(shí),有最大值,此時(shí)

答:(1)關(guān)于的函數(shù)關(guān)系式為,定義域?yàn)?/span>;

(2)透光區(qū)域與矩形窗面的面積比值最大時(shí),的長度為1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

袋中有形狀和大小完全相同的四種不同顏色的小球,每種顏色的小球各有4個(gè),分別編號(hào)為1,2,3,4.現(xiàn)從袋中隨機(jī)取兩個(gè)球.

(Ⅰ)若兩個(gè)球顏色不同,求不同取法的種數(shù);

(Ⅱ)在(1)的條件下,記兩球編號(hào)的差的絕對(duì)值為隨機(jī)變量X,求隨機(jī)變量X的概率分布與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有一種密碼,明文是由三個(gè)字符組成,密碼是由明文對(duì)應(yīng)的五個(gè)數(shù)字組成,編碼規(guī)則如下表:明文由表中每一排取一個(gè)字符組成,且第一排取的字符放在第一位,第二排取的字符放在第二位,第三排取的字符放在第三位,對(duì)應(yīng)的密碼由明文對(duì)應(yīng)的數(shù)字按相同的次序排成一排組成.


第一排

明文字符

A

B

C

D

密碼字符

11

12

13

14


第二排

明文字符

E

F

G

H

密碼字符

21

22

23

24


第三排

明文字符

M

N

P

Q

密碼字符

1

2

3

4

設(shè)隨機(jī)變量表示密碼中不同數(shù)字的個(gè)數(shù).

(Ⅰ); (Ⅱ)求隨機(jī)變量的分布列和它的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為α為參數(shù)),曲線C2的參數(shù)方程為β為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.

1)求曲線C1C2的極坐標(biāo)方程;

2)若點(diǎn)A在曲線C1上,點(diǎn)B在曲線C2上,且∠AOB,求|OA||OB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形,平面.

1)證明:平面;

2)若與平面所成角為45°,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某城市小區(qū)有一個(gè)矩形休閑廣場(chǎng),米,廣場(chǎng)的一角是半徑為米的扇形綠化區(qū)域,為了使小區(qū)居民能夠更好的在廣場(chǎng)休閑放松,現(xiàn)決定在廣場(chǎng)上安置兩排休閑椅,其中一排是穿越廣場(chǎng)的雙人靠背直排椅(寬度不計(jì)),點(diǎn)在線段上,并且與曲線相切;另一排為單人弧形椅沿曲線(寬度不計(jì))擺放.已知雙人靠背直排椅的造價(jià)每米為元,單人弧形椅的造價(jià)每米為元,記銳角,總造價(jià)為元.

1)試將表示為的函數(shù),并寫出的取值范圍;

2)如何選取點(diǎn)的位置,能使總造價(jià)最小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為美化校園,江蘇省淮陰中學(xué)將一個(gè)半圓形的邊角地改造為花園.如圖所示,O為圓心,半徑為1千米,點(diǎn)A、B、P都在半圓弧上,設(shè)∠NOP=POA=,∠AOB=,且.

1)請(qǐng)用分別表示線段NA、BM的長度;

2)若在花園內(nèi)鋪設(shè)一條參觀線路,由線段NA、AB、BM三部分組成,則當(dāng)取何值時(shí),參觀線路最長?

3)若在花園內(nèi)的扇形ONP和四邊形OMBA內(nèi)種滿杜鵑花,則當(dāng)取何值時(shí),杜鵑花的種植總面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于數(shù)列{an},若從第二項(xiàng)起的每一項(xiàng)均大于該項(xiàng)之前的所有項(xiàng)的和,則稱{an}P數(shù)列.

1)若{an}的前n項(xiàng)和Sn3n+2,試判斷{an}是否是P數(shù)列,并說明理由;

2)設(shè)數(shù)列a1,a2a3,a10是首項(xiàng)為﹣1、公差為d的等差數(shù)列,若該數(shù)列是P數(shù)列,求d的取值范圍;

3)設(shè)無窮數(shù)列{an}是首項(xiàng)為a、公比為q的等比數(shù)列,有窮數(shù)列{bn},{cn}是從{an}中取出部分項(xiàng)按原來的順序所組成的不同數(shù)列,其所有項(xiàng)和分別為T1,T2,求{an}P數(shù)列時(shí)aq所滿足的條件,并證明命題a0T1T2,則{an}不是P數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過橢圓的左頂點(diǎn)斜率為2的直線,與橢圓的另一個(gè)交點(diǎn)為,與軸的交點(diǎn)為,已知.

1)求橢圓的離心率;

2)設(shè)動(dòng)直線與橢圓有且只有一個(gè)公共點(diǎn),且與直線相交于點(diǎn),若軸上存在一定點(diǎn),使得,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案