如圖,已知,圖中的一系列圓是圓心分別為A、B的兩組同心圓,每組同心圓的半徑分別是1,2,3,…,n,…. 利用這兩組同心圓可以畫出以A、B為焦點的橢圓或雙曲線. 若其中經(jīng)過點M、N的橢圓的離心率分別是,經(jīng)過點P,Q 的雙曲線的離心率分別是,則它們的大小關(guān)系是      (用“”連接)

試題分析:因為這些橢圓或雙曲線的焦點都是,所以比較離心率的大小主要看的大小.點對應(yīng)橢圓的而點對應(yīng)橢圓的所以對應(yīng)雙曲線的對應(yīng)雙曲線的所以因此.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的中點在原點,焦點在x軸上,離心率等于,它的一個頂點恰好是拋物線的焦點.

(1)求橢圓C的方程;
(2)己知點P(2,3),Q(2,-3)在橢圓上,點A、B是橢圓上不同的兩個動點,且滿足APQ=BPQ,試問直線AB的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形CDEF內(nèi)接于橢圓,且它的四條邊與坐標(biāo)軸平行,正方形GHPQ的頂點G,H在橢圓上,頂點P,Q在正方形的邊EF上.且CD=2PQ=

(1)求橢圓的方程;
(2)已知點M(2,1),平行于OM的直線l在y軸上的截距為m(m:≠0),l交橢圓于A,B兩個不同點,求證:直線MA,MB與x軸始終圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓E:+=1(a>b>0),以拋物線y2=8x的焦點為頂點,且離心率為.
(1)求橢圓E的方程;
(2)若F為橢圓E的左焦點,O為坐標(biāo)原點,直線l:y=kx+m與橢圓E相交于A、B兩點,與直線x=-4相交于Q點,P是橢圓E上一點且滿足=+,證明·為定值,并求出該值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在平面直角坐標(biāo)系中,有橢圓=1(a>b>0)的焦距為2c,以O(shè)為圓心,a為半徑的圓.過點作圓的兩切線互相垂直,則離心率e=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的右準(zhǔn)線方程是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓,是橢圓長軸的一個端點,是橢圓短軸的一個端點,為橢圓的一個焦點.若,則該橢圓的離心率為 ( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)橢圓+y2=1的左焦點為F,P為橢圓上一點,其橫坐標(biāo)為,則|PF|等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若已知中心在原點的橢圓與雙曲線有公共焦點,且左、右焦點分別為F1,F2,且兩條曲線在第一象限的交點為P,△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,橢圓與雙曲線的離心率分別為e1,e2,則e1·e2的取值范圍是(  )
A.(0,+∞)B.(,+∞)
C.(,+∞)D.(,+∞)

查看答案和解析>>

同步練習(xí)冊答案