【題目】已知數(shù)列{an}滿(mǎn)足a1+2a2+3a3+…+nan=n(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)令 ,寫(xiě)出Tn關(guān)于n的表達(dá)式,并求滿(mǎn)足Tn> 時(shí)n的取值范圍.
【答案】
(1)解:由a1+2a2+3a3+…+nan=n,
可得a1+2a2+3a3+…+(n﹣1)an﹣1=n﹣1(n>1),
相減可得nan=1,即有an= ,(n>1),
當(dāng)n=1時(shí),a1=1,上式也成立,
可得an= ,(n∈N*);
(2)解:由 ,
結(jié)合(1)可得,bn=(2n﹣1)( )n,
前n項(xiàng)和Tn=1 +3( )2+…+(2n﹣3)( )n﹣1+(2n﹣1)( )n,
Tn=1( )2+3( )3+…+(2n﹣3)( )n+(2n﹣1)( )n+1,
相減可得, Tn= +2[( )2+…+( )n﹣1+( )n]﹣(2n﹣1)( )n+1
= +2 ﹣(2n﹣1)( )n+1,
化簡(jiǎn)可得,前n項(xiàng)和Tn=3﹣ .
由Tn﹣Tn﹣1=3﹣ ﹣(3﹣ )= ,
當(dāng)n≥2時(shí),Tn>Tn﹣1,可得數(shù)列{Tn}遞增,
由T4=3﹣ = < ;T5=3﹣ = > .
即有n≥5時(shí),Tn≥T5> .
故n的取值范圍是n≥5,且n∈N*
【解析】(1)由條件,可將n換為n﹣1,相減,即可得到所求通項(xiàng)公式;(2)求得bn=(2n﹣1)( )n , 由數(shù)列的求和方法:錯(cuò)位相減法,運(yùn)用等比數(shù)列的求和公式,計(jì)算可得Tn , 判斷單調(diào)性,求得T4 , T5 , 即可得到所求n的范圍.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解數(shù)列的前n項(xiàng)和(數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方體ABCD﹣A1B1C1D1中,點(diǎn)Q為對(duì)角面A1BCD1內(nèi)一動(dòng)點(diǎn),點(diǎn)M、N分別在直線AD和AC上自由滑動(dòng),直線DQ與MN所成角的最小值為θ,則下列結(jié)論中正確的是( )
A. 若θ=15°,則點(diǎn)Q的軌跡為橢圓的一部分
B. 若θ=30°,則點(diǎn)Q的軌跡為橢圓的一部分
C. 若θ=45°,則點(diǎn)Q的軌跡為橢圓的一部分
D. 若θ=60°,則點(diǎn)Q的軌跡為橢圓的一部分
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線C的方程為y=ax2(a<0),過(guò)拋物線C上一點(diǎn)P(x0 , y0)(x0≠0)作斜率為k1 , k2的兩條直線分別交拋物線C于A(x1 , y1)B(x2 , y2)兩點(diǎn)(P,A,B三點(diǎn)互不相同),且滿(mǎn)足k2+λk1=0(λ≠0且λ≠﹣1).
(Ⅰ)求拋物線C的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;
(Ⅱ)設(shè)直線AB上一點(diǎn)M,滿(mǎn)足 =λ ,證明線段PM的中點(diǎn)在y軸上;
(Ⅲ)當(dāng)λ=1時(shí),若點(diǎn)P的坐標(biāo)為(1,﹣1),求∠PAB為鈍角時(shí)點(diǎn)A的縱坐標(biāo)y1的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】f(x)是定義在(0,+∞)上單調(diào)函數(shù),且對(duì)x∈(0,+∞),都有f(f(x)﹣lnx)=e+1,則方程f(x)﹣f′(x)=e的實(shí)數(shù)解所在的區(qū)間是( )
A.(0, )
B.( ,1)
C.(1,e)
D.(e,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】連續(xù)拋擲同一顆均勻的骰子,令第i次得到的點(diǎn)數(shù)為ai , 若存在正整數(shù)k,使a1+a2+…+ak=6,則稱(chēng)k為你的幸運(yùn)數(shù)字.
(1)求你的幸運(yùn)數(shù)字為3的概率;
(2)若k=1,則你的得分為5分;若k=2,則你的得分為3分;若k=3,則你的得分為1分;若拋擲三次還沒(méi)找到你的幸運(yùn)數(shù)字則記0分,求得分X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人在連續(xù)7天的定點(diǎn)投籃的分?jǐn)?shù)統(tǒng)計(jì)如下:在上述統(tǒng)計(jì)數(shù)據(jù)的分析中,一部分計(jì)算如右圖所示的算法流程圖(其中 是這7個(gè)數(shù)據(jù)的平均數(shù)),則輸出的S的值是( )
觀測(cè)次數(shù)i | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
觀測(cè)數(shù)據(jù)ai | 5 | 6 | 8 | 6 | 8 | 8 | 8 |
A.1
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)分別為,,若橢圓經(jīng)過(guò)點(diǎn),且的面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)斜率為的直線與以原點(diǎn)為圓心,半徑為的圓交于,兩點(diǎn),與橢圓交于,兩點(diǎn),且,當(dāng)取得最小值時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)= (a>b>0)的圖象是曲線C.
(1)在如圖的坐標(biāo)系中分別做出曲線C的示意圖,并分別標(biāo)出曲線C與x軸的左、右交點(diǎn)A1 , A2 .
(2)設(shè)P是曲線C上位于第一象限的任意一點(diǎn),過(guò)A2作A2R⊥A1P于R,設(shè)A2R與曲線C交于Q,求直線PQ斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于兩個(gè)定義域均為D的函數(shù)f(x),g(x),若存在最小正實(shí)數(shù)M,使得對(duì)于任意x∈D,都有|f(x)﹣g(x)|≤M,則稱(chēng)M為函數(shù)f(x),g(x)的“差距”,并記作||f(x),g(x)||.
(1)求f(x)=sinx(x∈R),g(x)=cosx(x∈R)的差距;
(2)設(shè)f(x)= (x∈[1,e ]),g(x)=mlnx(x∈[1,e ]).(e≈2.718)
①若m=2,且||f(x),g(x)||=1,求滿(mǎn)足條件的最大正整數(shù)a;
②若a=2,且||f(x),g(x)||=2,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com