精英家教網 > 高中數學 > 題目詳情
設x>0,y>0,且
1
x
+
1
y
=16
,則x+y的最小值為
1
4
1
4
分析:把題目給出的等式且
1
x
+
1
y
=16
變形,得到
1
16x
+
1
16y
=1
,然后把x+y看作是(x+y)與1相乘,用
1
16x
+
1
16y
替換1,展開后運用基本不等式可求得最值.
解答:解:由
1
x
+
1
y
=16
,得:
1
16x
+
1
16y
=1
,
則x+y=(x+y)×1=(x+y)(
1
16x
+
1
16y
)
=
1
16
+
1
16
+(
y
16x
+
x
16y
)
1
8
+2
y
16x
x
16y
=
1
8
+
1
8
=
1
4

故答案為
1
4
點評:本題考查了基本不等式,考查了利用基本不等式求最值,解答此題的關鍵是對“1”的靈活替換,這是此類問題經常用到的方法,此題是基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設數列{an}的前n項和為Sn,并且滿足2Sn=an2+n,an>0(n∈N*).
(Ⅰ)求a1,a2,a3;
(Ⅱ)猜想{an}的通項公式,并加以證明;
(Ⅲ)設x>0,y>0,且x+y=1,證明:
anx+1
+
any+1
2(n+2)

查看答案和解析>>

科目:高中數學 來源: 題型:

設x>0,y>0,且2x+y=20,則lgx+lgy的最大值是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)設x>0,y>0,且
8
x
+
2
y
=1
,求x+y的最小值.
(2)若x∈R,y∈R,求證:
x2+y2
2
≥(
x+y
2
)2

查看答案和解析>>

科目:高中數學 來源: 題型:

設x>0,y>0,且
1
x
+
1
2y
=4,z=2log4x+log2y,則z的最小值是(  )

查看答案和解析>>

同步練習冊答案