(2007•河?xùn)|區(qū)一模)在約束條件
0≤x≤2
0≤y≤2
y-x≥1
下,z=4-2x+y的最大值是
6
6
分析:本題考查的知識(shí)點(diǎn)是簡(jiǎn)單線性規(guī)劃的應(yīng)用,我們要先畫(huà)出滿(mǎn)足約束條件
0≤x≤2
0≤y≤2
y-x≥1
的平面區(qū)域,然后分析平面區(qū)域里各個(gè)角點(diǎn),然后將其代入z=4-2x+y中,求出z=4-2x+y的最大值.
解答:解:滿(mǎn)足約束條件
0≤x≤2
0≤y≤2
y-x≥1
的平面區(qū)域如圖示:.
由圖得.當(dāng)x=0,y=2即為于點(diǎn)A(0.2)時(shí),
z=4-2x+y有最大值6.
故答案為6.
點(diǎn)評(píng):在解決線性規(guī)劃的小題時(shí),我們常用“角點(diǎn)法”,其步驟為:①由約束條件畫(huà)出可行域⇒②求出可行域各個(gè)角點(diǎn)的坐標(biāo)⇒③將坐標(biāo)逐一代入目標(biāo)函數(shù)⇒④驗(yàn)證,求出最優(yōu)解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•河?xùn)|區(qū)一模)已知F1,F(xiàn)2是雙曲線
x2
2
-y2=1的左、右焦點(diǎn),P、Q為右支上的兩點(diǎn),直線PQ過(guò)F2,則|PF1|+|QF1|-|PQ|的值為
4
2
4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•河?xùn)|區(qū)一模)函數(shù) y=
x2+2
(x≤0)的反函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•河?xùn)|區(qū)一模)△ABC的內(nèi)角滿(mǎn)足sinA+cosA>0,tanA-sinA<0,則A的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•河?xùn)|區(qū)一模)橢圓與雙曲線
x2
5
-y2=1有共同的焦點(diǎn),且一條準(zhǔn)線的方程是x=3
6
,則此橢圓的方程為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案