已知定義域?yàn)镽的函數(shù)f(x)=是奇函數(shù).
(1)求a,b的值;
(2)證明:函數(shù)f(x)在R上是減函數(shù);
(3)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.
(1)解 因?yàn)?i>f(x)是R上的奇函數(shù),
故f(0)=0,即=0,解得b=1, 從而有f(x)=
.
又由f(1)=-f(-1)知=-
,解得a=2.
∴f(x)=. ∴a=2,b=1.
(2)證明 設(shè)x1<x2,
f(x1)-f(x2)=-
=
=.
∵x1<x2,則2x2-2x1>0,∴f(x1)>f(x2). 故f(x)是R上的減函數(shù).
(3)解 由(2)知f(x)在R上為減函數(shù),又因?yàn)?i>f(x)是奇函數(shù),從而不等式f(t2-2t)+f(2t2-k)<0等價(jià)于f(t2-2t)<-f(2t2-k)=f(-2t2+k).因?yàn)?i>f(x)是R上的減函數(shù),由上式推得t2-2t>-2t2+k. 即對(duì)一切t∈R有3t2-2t-k>0恒成立,
從而Δ=4+12k<0,解得k<-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
-2x+a | 2x+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com