給出下列四個(gè)結(jié)論:
(1)命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”
(2)若“am2<bm2,則a<b”的逆命題為真
(3)函數(shù)f(x)=x-sinx(x∈R)有3個(gè)零點(diǎn)
(4)若A、B是△ABC的內(nèi)角,則“A>B”的充要條件是“sinA>sinB”
則正確結(jié)論序號(hào)是( 。
分析:利用全稱命題與特稱命題互為否定命題判斷(1)是否正確;
對(2),寫出逆命題判斷其真假即可;
利用函數(shù)的交點(diǎn)個(gè)數(shù),來判斷函數(shù)零點(diǎn)個(gè)數(shù),判斷(3)是否正確;
對(4),從充分性與必要性兩個(gè)方面驗(yàn)證.
解答:解:∵特稱命題的否定是全稱命題,∴(1)正確;
∵命題的逆命題是:若a<b,則am2<bm2,∵m2=0時(shí)不成立,∴是假命題,故(2)不正確;
根據(jù)角x的正弦線≤x(當(dāng)且僅當(dāng)x=0時(shí)取等號(hào)),∴y=x與y=sinx只有一個(gè)交點(diǎn),∴函數(shù)f(x)=x-sinx(x∈R)有1個(gè)零點(diǎn),(3)不正確;
∵A+B<π,①A、B都是銳角或直角時(shí),A>B?sinA>sinB;
           ②A、B有一個(gè)為鈍角時(shí),A為鈍角,A>B,π-A>B⇒sinA>sinB,
反過來sinA>sinB⇒A為鈍角(∵若B為鈍角,π-B>A⇒sinB>sinA).
∴(4)正確;
故選B
點(diǎn)評:本題借助考查命題的真假判斷,考查函數(shù)零點(diǎn)個(gè)數(shù)的判斷、充要條件的判斷及特稱命題的否定.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)結(jié)論:①函數(shù)y=ax(a>0且a≠1)與函數(shù)y=logaax(a>0且a≠1)的定義域相同;②函數(shù)y=k3x(k>0)(k為常數(shù))的圖象可由函數(shù)y=3x的圖象經(jīng)過平移得到;③函數(shù)y=
1
2
+
1
2x-1
(x≠0)是奇函數(shù)且函數(shù)y=x(
1
3x-1
+
1
2
)
(x≠0)是偶函數(shù);④函數(shù)y=cos|x|是周期函數(shù).其中正確結(jié)論的序號(hào)是
 
.(填寫你認(rèn)為正確的所有結(jié)論序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為1,線段AC1上有兩個(gè)動(dòng)點(diǎn)E,F(xiàn),且EF=
3
3
.給出下列四個(gè)結(jié)論:
①BF∥CE;
②CE⊥BD;
③三棱錐E-BCF的體積為定值;
④△BEF在底面ABCD內(nèi)的正投影是面積為定值的三角形;
其中,正確結(jié)論的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正三棱錐P-ABC中,D為PA的中點(diǎn),O為△ABC的中心,給出下列四個(gè)結(jié)論:①OD∥平面PBC;  ②OD⊥PA;③OD⊥BC;  ④PA=2OD.其中正確結(jié)論的序號(hào)是
③④
③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•馬鞍山模擬)給出下列四個(gè)結(jié)論:
①命題''?x∈R,x2-x>0''的否定是''?x∈R,x2-x≤0''
②“若am2<bm2,則a<b”的逆命題為真;
③已知直線l1:ax+2y-1=0,l1:x+by+2=0,則l1⊥l2的充要條件是
ab
=-2
;
④對于任意實(shí)數(shù)x,有f(-x)=-f(x),g(-x)=g(x)且x>0時(shí),f'(x)>0,g'(x)>0,則x<0時(shí),f'(x)>g'(x).
其中正確結(jié)論的序號(hào)是
①④
①④
(填上所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•寧波二模)已知平面α、β、γ、和直線l,m,且l⊥m,α⊥γ,α∩γ=m,γ∩β=l;給出下列四個(gè)結(jié)論:①β⊥γ ②l⊥α③m⊥β;④α⊥β.其中正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案