【題目】在直角坐標(biāo)系中,已知直線的直角坐標(biāo)方程為,曲線的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線和直線的極坐標(biāo)方程;

2)已知直線與曲線、相交于異于極點(diǎn)的點(diǎn),若的極徑分別為,求的值.

【答案】1,.2

【解析】

1)先將曲線的參數(shù)方程化為直角坐標(biāo)方程,即可代入公式化為極坐標(biāo);根據(jù)直線的直角坐標(biāo)方程,求得傾斜角,即可得極坐標(biāo)方程.

2)將直線的極坐標(biāo)方程代入曲線、可得,進(jìn)而代入可得的值.

1)曲線的參數(shù)方程為為參數(shù)),

消去,

,代入得,

從而得的極坐標(biāo)方程為

∵直線的直角坐標(biāo)方程為,其傾斜角為,

∴直線的極坐標(biāo)方程為.

2)將代入曲線的極坐標(biāo)方程分別得到

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(1)若處取到極小值,求的值及函數(shù)的單調(diào)區(qū)間;

(2)若當(dāng)時(shí), 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,它在幾何學(xué)中的研究比西方早1000多年,在《九章算術(shù)》中,將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱為塹堵(qian du);陽(yáng)馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,鱉膈(bie nao)指四個(gè)面均為直角三角形的四面體.如圖在塹堵中,.

(1)求證:四棱錐為陽(yáng)馬;

(2)若,當(dāng)鱉膈體積最大時(shí),求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】工廠質(zhì)檢員從生產(chǎn)線上每半個(gè)小時(shí)抽取一件產(chǎn)品并對(duì)其某個(gè)質(zhì)量指標(biāo)進(jìn)行檢測(cè),一共抽取了件產(chǎn)品,并得到如下統(tǒng)計(jì)表.該廠生產(chǎn)的產(chǎn)品在一年內(nèi)所需的維護(hù)次數(shù)與指標(biāo)有關(guān),具體見(jiàn)下表.

質(zhì)量指標(biāo)

頻數(shù)

一年內(nèi)所需維護(hù)次數(shù)

(1)以每個(gè)區(qū)間的中點(diǎn)值作為每組指標(biāo)的代表,用上述樣本數(shù)據(jù)估計(jì)該廠產(chǎn)品的質(zhì)量指標(biāo)的平均值(保留兩位小數(shù));

(2)用分層抽樣的方法從上述樣本中先抽取件產(chǎn)品,再?gòu)?/span>件產(chǎn)品中隨機(jī)抽取件產(chǎn)品,求這件產(chǎn)品的指標(biāo)都在內(nèi)的概率;

(3)已知該廠產(chǎn)品的維護(hù)費(fèi)用為元/次,工廠現(xiàn)推出一項(xiàng)服務(wù):若消費(fèi)者在購(gòu)買(mǎi)該廠產(chǎn)品時(shí)每件多加元,該產(chǎn)品即可一年內(nèi)免費(fèi)維護(hù)一次.將每件產(chǎn)品的購(gòu)買(mǎi)支出和一年的維護(hù)支出之和稱為消費(fèi)費(fèi)用.假設(shè)這件產(chǎn)品每件都購(gòu)買(mǎi)該服務(wù),或者每件都不購(gòu)買(mǎi)該服務(wù),就這兩種情況分別計(jì)算每件產(chǎn)品的平均消費(fèi)費(fèi)用,并以此為決策依據(jù),判斷消費(fèi)者在購(gòu)買(mǎi)每件產(chǎn)品時(shí)是否值得購(gòu)買(mǎi)這項(xiàng)維護(hù)服務(wù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若如圖所示的程序框圖輸出的S是126,則n條件為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拉丁舞,又稱拉丁風(fēng)情舞或自由社交舞,它是拉丁人民在漫長(zhǎng)的歷史長(zhǎng)河中形成的,包含倫巴、恰恰、牛仔舞、桑巴、斗牛舞、深受人民的喜愛(ài).某藝術(shù)培訓(xùn)機(jī)構(gòu)為了調(diào)查本校學(xué)院對(duì)拉丁舞的學(xué)習(xí)情況,分別在剛學(xué)習(xí)了一個(gè)季度的本校大班(8歲以下)及種子班(8歲以上)的學(xué)員中各隨機(jī)抽取了15名學(xué)員進(jìn)行摸底考試,這30名學(xué)員考試成績(jī)的莖葉圖如圖所示.

規(guī)定:成績(jī)不低于85分,則認(rèn)為成績(jī)優(yōu)秀;成績(jī)低于85分,則認(rèn)為成績(jī)一般.

1)根據(jù)上述數(shù)據(jù)填寫(xiě)下列2×2聯(lián)表:

成績(jī)優(yōu)秀

成績(jī)一般

總計(jì)

大班

種子班

總計(jì)

判斷是否有95%的把握認(rèn)為成績(jī)優(yōu)秀或成績(jī)一般與學(xué)員的年齡有關(guān);

2)在大班及種子班的參加摸底考試且成績(jī)優(yōu)秀的學(xué)員中以分層抽樣的方式抽取6名學(xué)員進(jìn)行特別集訓(xùn),集訓(xùn)后,再對(duì)這6名學(xué)員進(jìn)行測(cè)試,按測(cè)試成績(jī),取前3名授予“舞蹈小精靈”稱號(hào),在被授予“舞蹈小精靈”稱號(hào)的學(xué)員中,求種子班的學(xué)員恰好有2人的概率.

參考公式及數(shù)據(jù):.

0.100

0.050

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)O為坐標(biāo)原點(diǎn),橢圓C:(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,離心率為,點(diǎn)I,J分別是橢圓C的右頂點(diǎn)、上頂點(diǎn),IOJ的邊IJ上的中線長(zhǎng)為

(1)求橢圓C的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)H(-2,0)的直線交橢圓C于A,B兩點(diǎn),若AF1⊥BF1,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系,曲線的參數(shù)方程為是參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)求的直角坐標(biāo)方程和的普通方程;

(2)相交于兩點(diǎn),設(shè)點(diǎn)上異于的一點(diǎn),當(dāng)面積最大時(shí),求點(diǎn)的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)().

1)討論的單調(diào)性;

2)若對(duì),恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案