已知定義在(0,+∞)上的函數(shù)f(x)=
(4k-1)ln
1
x
,x∈(0 , e]
kx2-kx,x∈(e , +∞)
是增函數(shù)
(1)求常數(shù)k的取值范圍
(2)過點(1,0)的直線與f(x)(x∈(e,+∞))的圖象有交點,求該直線的斜率的取值范圍.
分析:(1)由題意得
1-4k>0
k>0
1-4k≤ke2-ke
,由此解得常數(shù)k的取值范圍.
(2)設過點(1,0)的直線為y=m(x-1),聯(lián)立
y=m(x-1)
y=kx2-kx
,解得m=kx,再由x∈(e,+∞)可得m=kx>ke,即得直線的斜率取值范圍.
解答:解:(1)由題意得
1-4k>0
k>0
1-4k≤ke2-ke
,解得 
1
e2-e+4
≤k<
1
4
,從而k的取值范圍為[
1
e2-e+4
1
4
)

(2)設過點(1,0)的直線為y=m(x-1),聯(lián)立
y=m(x-1)
y=kx2-kx
,解得m(x-1)=kx2-kx,
由于x>e,所以m=kx,m=kx>ke,即直線的斜率取值范圍為(ke,+∞).
點評:本題主要考查對數(shù)函數(shù)的單調性的判斷和應用,直線的斜率,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知定義在(0,+∞)上的函數(shù)f(x),對一切x、y>0,恒有f(x+y)=f(x)+f(y)成立,且x>0時,f(x)<0.
(1)求證:f(x)在(0,+∞)上是減函數(shù).
(2)f(2)=-
12
時,解不等式f(ax+4)>-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網已知定義在區(qū)間[0,1]上的函數(shù)y=f(x)的圖象如圖所示,對于滿足0<x1<x2<1的任意x1、x2,給出下列結論:
①f(x2)-f(x1)>x2-x1;
②x2f(x1)>x1f(x2);
f(x1)+f(x2)
2
<f (
x1+x2
2
).
其中正確結論的序號是
 
(把所有正確結論的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在(0,+∞)上的三個函數(shù)f(x)=lnx,g(x)=x2-af(x),h(x)=x-a
x
,且g(x)在x=1處取得極值.
(Ⅰ)求函數(shù)g(x)在x=2處的切線方程;
(Ⅱ)求函數(shù)h(x)的單調區(qū)間;
(Ⅲ)把h(x)對應的曲線C1向上平移6個單位后得到曲線C2,求C2與g(x)對應曲線C3的交點個數(shù),并說明理由.
請考生在第22、23、24題中任選一題作答,如果多做,則按所做的第一題記分.
作答時,用2B鉛筆在答題卡上把所選題目對應的題號涂黑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在(0,+∞)的單調函數(shù)f(x)滿足:對任意正數(shù)x,都有f[f(x)-
1
x
]=2,則f(
1
5
)=( 。

查看答案和解析>>

同步練習冊答案