已知數(shù)列{an}的前三項(xiàng)分別為a1=5,a2=6,a3=8,且數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+m=(S2n+S2m)-(n-m)2,其中m,n為任意正整數(shù).
(1)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn;
(2)求滿足S-an+33=k2的所有正整數(shù)k,n.
解 (1)在等式Sm+n=(S2n+S2m)-(n-m)2中,分別令m=1,m=2,得
Sn+1=(S2n+S2)-(n-1)2,①
Sn+2=(S2n+S4)-(n-2)2,②
②-①,得an+2=2n-3+.(3分)
在等式Sn+m=(S2n+S2m)-(n-m2)中,令n=1,m=2,得S3=(S2+S4)-1,由題設(shè)知,S2=11,S3=19,故S4=29.
所以an+2=2n+6(n∈N*),即an=2n+2(n≥3,n∈N*).
又a2=6也適合上式,
故an= (5分)
Sn=即Sn=n2+3n+1,n∈N*.(6分)
(2)記S-an+33=k2(*).
n=1時(shí),無正整數(shù)k滿足等式(*).
n≥2時(shí),等式(*)即為(n2+3n+1)2-3(n-10)=k2.(8分)
①當(dāng)n=10時(shí),k=131.(9分)
②當(dāng)n>10時(shí),則k<n2+3n+1,
又k2-(n2+3n)2=2n2+3n+31>0,所以k>n2+3n.
從而n2+3n<k<n2+3n+1.
又因?yàn)?i>n,k∈N*,所以k不存在,從而無正整數(shù)k滿足等式(*).(12分)
③當(dāng)n<10時(shí),則k>n2+3n+1,因?yàn)?i>k∈N*,所以k≥n2+3n+2.
從而(n2+3n+1)2-3(n-10)≥(n2+3n+2)2.
即2n2+9n-27≤0.因?yàn)?i>n∈N*,所以n=1或2.(14分)
n=1時(shí),k2=52,無正整數(shù)解;
n=2時(shí),k2=145,無正整數(shù)解.
綜上所述,滿足等式(*)的n,k分別為n=10,k=131.(16分)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
若所在的平面內(nèi)的點(diǎn),且.給出下列說法:
①;
②的最小值一定是;
③點(diǎn)A、在一條直線上;
④向量的方向上的投影必相等.
其中正確的個(gè)數(shù)是
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知無窮數(shù)列{an}的各項(xiàng)均為正整數(shù),Sn為數(shù)列{an}的前n項(xiàng)和.
(1)若數(shù)列{an}是等差數(shù)列,且對任意正整數(shù)n都有Sn3=(Sn)3成立,求數(shù)列{an}的通項(xiàng)公式;
(2)對任意正整數(shù)n,從集合{a1,a2,…,an}中不重復(fù)地任取若干個(gè)數(shù),這些數(shù)之間經(jīng)過加減運(yùn)算后所得數(shù)的絕對值為互不相同的正整數(shù),且這些正整數(shù)與a1,a2,…,an一起恰好是1至Sn全體正整數(shù)組成的集合.
(ⅰ)求a1,a2的值;
(ⅱ)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)向量a=(2,sin θ),b=(1,cos θ),θ為銳角.
(1)若a·b=,求sin θ+cos θ的值;
(2)若a∥b,求sin的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,滿足8Sn=a+4an+3(n∈N*),且a1,a2,a7依次是等比數(shù)列{bn}的前三項(xiàng).
(1)求數(shù)列{an}及{bn}的通項(xiàng)公式;
(2)是否存在常數(shù)a>0且a≠1,使得數(shù)列{an-logabn}(n∈N*)是常數(shù)列?若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
第22屆冬季奧運(yùn)會(huì)于2014年2月7日在俄羅斯索契開幕,到冰壺比賽場館服務(wù)的大學(xué)生志愿者中,有2名來自莫斯科國立大學(xué),有4名來自圣彼得堡國立大學(xué),現(xiàn)從這6名志愿者中隨機(jī)抽取2人,至少有1名志愿者來自莫斯科國立大學(xué)的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)A、B是兩個(gè)非空集合,定義運(yùn)算,已知
),則A× B=( )
A.[o,1] B.[o,2]
C.∞) D.[0,1] (2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)(為常數(shù)).
(1)函數(shù)的圖象在點(diǎn)()處的切線與函數(shù)的圖象相切,求實(shí)數(shù)的值;
(2)若,、使得成立,求滿足上述條件的最大整數(shù);
(3)當(dāng)時(shí),若對于區(qū)間[1,2]內(nèi)的任意兩個(gè)不相等的實(shí)數(shù),,都有
成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com