已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.
(1)當(dāng)m=2時,求A∪B;
(2)若A∩B=[1,3],求實(shí)數(shù)m的值;
(3)若A⊆∁RB,求實(shí)數(shù)m的取值范圍.
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專題:計算題,集合
分析:(1)先求出集合A,B,可求A∪B;
(2)利用A∩B=[1,3],確定實(shí)數(shù)m的值.
(3)求出∁RB,利用條件A⊆∁RB,確定條件關(guān)系,即可求實(shí)數(shù)m的取值范圍.
解答: 解:(1)∵A={x|x2-2x-3≤0,x∈R},
∴A={x|-1≤x≤3,x∈R},
∵B={x|x2-4x≤0}={x|0≤x≤4},
∴A∪B=[-1,4];
(2)∵A∩B=[1,3],
∴m-2=1,即m=3,
此時B={x|1≤x≤5},滿足條件A∩B=[1,3].
(3)∵B={x|m-2≤x≤m+2}.
∴∁RB={x|x>m+2或x<m-2},
要使A⊆∁RB,
則3<m-2或-1>m+2,
解得m>5或m<-3,
即實(shí)數(shù)m的取值范圍是m>5或m<-3.
點(diǎn)評:本題主要考查集合的基本運(yùn)算,以及利用集合關(guān)系求參數(shù)問題,考查學(xué)生分析問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,有a2+b2-c2=ab,則角C為( 。
A、60°B、120°
C、30°D、45°或135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,角A,B,C所對的邊分別是a,b,c,若
a-c
b-c
=
sinB
sinA+sinC

(1)求角A;
(2)若f(x)=sin2(x+A)-cos2(x+A),求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在某次試驗(yàn)中,有兩個試驗(yàn)數(shù)據(jù)x,y統(tǒng)計的結(jié)果如下面的表格1.
x 1 2 3 4 5
y 2 3 4 4 5
參考數(shù)據(jù):
序號 x y x2 xy
1 1 2 1 2
2 2 3 4 6
3 3 4 9 12
4 4 4 16 16
5 5 5 25 25
表格2
(1)在給出的坐標(biāo)系中畫出x,y的散點(diǎn)圖.
(2)補(bǔ)全表格2,然后根據(jù)表格2的內(nèi)容和公式
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,
a
=
.
y
-
b
.
x

①求出y對x的回歸直線方程
y
=
b
x+
a
中回歸系數(shù)
a
,
b
;
②估計當(dāng)x為10時
y
的值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=6,an+1+an=3•2n+1,n∈N*
(Ⅰ)設(shè)bn=an-2n+1,證明:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)在數(shù)列{an}中,是否存在連續(xù)三項(xiàng)成等差數(shù)列?若存在,求出所有符合條件的項(xiàng);若不存在,請說明理由;
(Ⅲ)若1<r<s且r,s∈N*,求證:使得a1,ar,as成等差數(shù)列的點(diǎn)列(r,s)在某一條直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知tanα=2,求sin2α+sinαcosα+2cos2α
(2)已知:sin( 
12
+α)=
3
4
,求cos(
π
12
-α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,公差為d.已知S2,S3+1,S4成等差數(shù)列.
(Ⅰ)求d的值;
(Ⅱ)若a1,a2,a5成等比數(shù)列,求
an-2
Sn
(n∈N*)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0),設(shè)P是雙曲線C上任意一點(diǎn),O為坐標(biāo)原點(diǎn),設(shè)F為雙曲線右焦點(diǎn).
(1)若雙曲線C滿足:無論點(diǎn)P在右支的何處,總有|PO|>|PF|,求雙曲線C在第一、三象限的那條漸近線的傾斜角的取值范圍;
(2)過右焦點(diǎn)F的動直線l交雙曲線于A、B兩點(diǎn),是否存在這樣的a,b的值,使得△OAB為等邊三角形.若存在,求出所有滿足條件的a,b的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:長方體ABCD-A1B1C1D1,AB=2,AD=4,AA1=4,O為對角線AC1的中點(diǎn),過O的直線與長方體表面交于兩點(diǎn)M,N,P為長方體表面上的動點(diǎn),則
PM
PN
的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案