【題目】某市旅游管理部門為提升該市26個旅游景點的服務質量,對該市26個旅游景點的交通、安全、環(huán)保、衛(wèi)生、管理五項指標進行評分.每項評分最低分0分,最高分100分.每個景點總分為這五項得分之和,根據(jù)考核評分結果,繪制交通得分與安全得分散點圖、交通得分與景點總分散點圖如圖

請根據(jù)圖中所提供的信息,完成下列問題:

1)若從交通得分排名前5名的景點中任取1個,求其安全得分大于90分的概率;

2)若從景點總分排名前6名的景點中任取3個,記安全得分不大于90分的景點個數(shù)為ξ,求隨機變量ξ的分布列和數(shù)學期望;

3)記該市26個景點的交通平均得分為,安全平均得分為,寫出的大小關系?(只寫出結果)

【答案】12)見解析,1.(3

【解析】

1)根據(jù)圖象安全得分大于90分的景點有3個,即可求得概率;

2ξ的可能取值為0,1,2,依次求得概率,即可得到分布列;

3)根據(jù)圖象中的點所在位置即可判定平均分的大小關系.

1)由圖象可知交通得分排名前5名的景點中,安全得分大于90分的景點有3個,

∴從交通得分排名前5名的景點中任取1個,其安全得分大于90分的概率為

2)結合兩圖象可知景點總分排名前6名的景點中,安全得分不大于90分的景點有2個,

ξ的可能取值為0,1,2

Pξ0,Pξ1,Pξ2,

ξ的分布列為:

ξ

0

1

2

P

Eξ)=0121

3)由圖象可知26個景點的交通得分全部在80分以上,主要集中在85分附近,

安全得分主要集中在80分附近,且80分以下的景點接近一半,故而

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,的中點.

(1)求證:平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校為了解高三年級不同性別的學生對體育課改上自習課的態(tài)度(肯定還是否定),進行了如下的調查研究.全年級共有名學生,男女生人數(shù)之比為,現(xiàn)按分層抽樣方法抽取若干名學生,每人被抽到的概率均為

1)求抽取的男學生人數(shù)和女學生人數(shù);

2)通過對被抽取的學生的問卷調查,得到如下列聯(lián)表:


否定

肯定

總計

男生


10


女生

30



總計




完成列聯(lián)表;

能否有的把握認為態(tài)度與性別有關?

3)若一班有名男生被抽到,其中人持否定態(tài)度,人持肯定態(tài)度;二班有名女生被抽到,其中人持否定態(tài)度,人持肯定態(tài)度.

現(xiàn)從這人中隨機抽取一男一女進一步詢問所持態(tài)度的原因,求其中恰有一人持肯定態(tài)度一人持否定態(tài)度的概率.

解答時可參考下面臨界值表:


0.10

0.05

0.025

0.010

0.005


2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為為參數(shù)),在以O為極點,x軸的非負半軸為極軸的極坐標系中,曲線C的極坐標方程為

1)求曲線C的直角坐標方程

2)設直線lx軸交于點P,且與曲線C相交與A、B兩點,若的等比中項,求實數(shù)m的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校象棋社團組織中國象棋比賽,采用單循環(huán)賽制,即要求每個參賽選手必須且只須和其他選手各比賽一場,勝者得分,負者得分,平局兩人各得分.若冠軍獲得者得分比其他人都多,且獲勝場次比其他人都少,則本次比賽的參賽人數(shù)至少為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖為服用同等劑量的三種新藥后血藥濃度的變化情況,其中點的橫坐標表示服用第種藥后血藥濃度達峰(最高濃度)時間,其它點的橫坐標分別表示服用三種新藥后血藥濃度首次降到峰值一半時所用的時間(單位:),點的縱坐標表示第種藥的血藥濃度的峰值.為服用第種藥后達到血藥濃度峰值時,血藥濃度提高的平均速度,記為服用第種藥后血藥濃度從峰值首次降到峰值的一半所用的時間,則中最小的,中最大的分別是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)滿足,且當時,成立,若,,,則a,b,c的大小關系是()

A. aB. C. D. c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中e為自然對數(shù)的底數(shù).

1)當a0時,求函數(shù)f (x)的單調減區(qū)間;

2)已知函數(shù)f (x)的導函數(shù)f (x)有三個零點x1x2,x3(x1 x2 x3).①求a的取值范圍;②若m1,m2(m1 m2)是函數(shù)f (x)的兩個零點,證明:x1m1x1 1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)fx),若fx0)=x0,則稱x0fx)的不動點.fx)=x3+ax2+bx+3.

1)當a0時,

i)求fx)的極值點;

)若存在x0既是fx)的極值點,也是fx)的不動點,求b的值;

2)是否存在a,b,使得fx)有兩個極值點,且這兩個極值點均為fx)的不動點?說明理由.

查看答案和解析>>

同步練習冊答案