如圖,PA⊥平面ABC,△ABC中,∠ACB=90°.則圖中Rt△的個(gè)數(shù)為( 。
A、4B、3C、2D、1
考點(diǎn):直線與平面垂直的性質(zhì)
專題:空間位置關(guān)系與距離
分析:由PA⊥平面ABC,△ABC中,∠ACB=90°,知PA⊥AB,PA⊥AC,PA⊥BC,從而BC⊥PC,由此能求出結(jié)果.
解答: 解:∵PA⊥平面ABC,△ABC中,∠ACB=90°,
∴PA⊥AB,PA⊥AC,PA⊥BC,
∴BC⊥PC,
∴直角三角形有:△PAB,△PAC,△ACB,△PCB,共4個(gè).
故選:A.
點(diǎn)評:本題考查圖形中直角三角形個(gè)數(shù)的求法,是基礎(chǔ)題,解題時(shí)要注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=4與x軸交于A,B,過A,B分別作圓的切線L1,L2;P為圓上異于A,B的動點(diǎn),過P作圓O的切線分別交L1,L2于D,C兩點(diǎn),直線AC交BD于點(diǎn)M,則M的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=tanx+sinx-|tanx-sinx|在區(qū)間(
π
2
,
2
)內(nèi)的圖象是
 
.(只填相應(yīng)序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在區(qū)間(0,1)中隨機(jī)地取出兩個(gè)數(shù),則兩數(shù)之和小于
5
6
的概率是( 。
A、
5
6
B、
5
12
C、
25
36
D、以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中是假命題的個(gè)數(shù)是( 。
①?α,β∈R,使cos(α+β)=cosα+sinβ;
②?a>0,函數(shù)f(x)=ln2x+lnx-a有零點(diǎn)
③若
a
,
b
是兩個(gè)非零向量,則“|
a
+
b
|=|
a
-
b
|”是“
a
b
”的充要條件;
④若函數(shù)f(x)=|2x-1|,則?x1,x2∈[0,1]且x1<x2,使得f(x1)>f(x2).
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2-2x+y2-2y=0與直線Ax+By=0僅有一個(gè)公共點(diǎn),則直線Ax+By=0的傾斜角為( 。
A、135°B、45°
C、60°D、135°或45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log
1
2
(x+1)   (x≥1)
1       (x<1)
,則不等式f(3-x2)<f(2x)的解集為( 。
A、(-3,1)
B、[-
2
,1)
C、[
1
2
,1)
D、(
1
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)y=cos2x的圖象,只需將y=sin(2x+
π
4
)的圖象(  )
A、向左平移
π
8
個(gè)單位長度
B、向右平移
π
8
個(gè)單位長度
C、向左平移
π
4
個(gè)單位長度
D、向右平移
π
4
個(gè)單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三角形的兩邊長分別為4,5,它們夾角的余弦值是 
1
2
,則第三邊長是(  )
A、
20
B、
21
C、
22
D、
61

查看答案和解析>>

同步練習(xí)冊答案