.與雙曲線有共同的漸近線,且經(jīng)過點(diǎn)的雙曲線的一個(gè)焦點(diǎn)到一條漸近線的距離是                                                 (    )
A.1B.2C.4D.8
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分12分)
如圖,已知兩定點(diǎn),和定直線,動(dòng)點(diǎn)在直線上的射影為,且

(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程并畫草圖;
(Ⅱ)是否存在過點(diǎn)的直線,使得直線與曲線相交于, 兩點(diǎn),且△的面積等于?如果存在,請(qǐng)求出直線的方程;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

、正方體ABCD—A1B1C1D1的側(cè)面AB1內(nèi)有一點(diǎn)P到直線A1B1與直線BC的距離相等如圖(1),則動(dòng)點(diǎn)P所在曲線的形狀大致為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.過點(diǎn)作斜率為的直線與雙曲線有兩個(gè)不同交點(diǎn).
⑴求的取值范圍?
⑵是否存在斜率,使得向量與雙曲線的一條漸近線的方向向量平行.若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
設(shè)圓過點(diǎn)P(0,2), 且在軸上截得的弦RG的長(zhǎng)為4.

(1)求圓心的軌跡E的方程;
(2)過點(diǎn)(0,1),作軌跡的兩條互相垂直的弦,設(shè)、的中點(diǎn)分別為、,試判斷直線是否過定點(diǎn)?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分12分)
在平面直角坐標(biāo)系xOy中,點(diǎn)P(x,y)為動(dòng)點(diǎn),已知點(diǎn)A(,0),B(-,0),直線PA與PB的斜率之積為定值-
(Ⅰ)求動(dòng)點(diǎn)P的軌跡E的方程;
(Ⅱ)若F(1,0),過點(diǎn)F的直線l交軌跡E于M、N兩點(diǎn),以MN為對(duì)角線的正方形的第三個(gè)頂點(diǎn)恰在y軸上,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)F是橢圓的右焦點(diǎn),橢圓上的點(diǎn)與點(diǎn)F的最大距離為M,最小距離為N,則橢圓
上與點(diǎn)F的距離等于的點(diǎn)的坐標(biāo)是                                 (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若拋物線的焦點(diǎn)與橢圓的焦點(diǎn)重合,則的值為    

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)兩定點(diǎn)的坐標(biāo)分別A(-1,0),B(2,0),動(dòng)點(diǎn)M滿足條件,求動(dòng)點(diǎn)M的軌跡方程并指出軌跡是什么圖形.

查看答案和解析>>

同步練習(xí)冊(cè)答案