如圖,在邊長為4的菱形中,.點(diǎn)分別在邊上,點(diǎn)與點(diǎn)不重合,.沿將翻折到的位置,使平面平面.
(1)求證:平面;
(2)設(shè)點(diǎn)滿足,試探究:當(dāng)取得最小值時(shí),直線與平面所成角的大小是否一定大于?并說明理由.
(1)證明:∵ 菱形的對角線互相垂直,∴,∴,
∵ ,∴.
∵ 平面⊥平面,平面平面,且平面,
∴ 平面, ∵ 平面,∴ ……………4分
(2)如圖,以為原點(diǎn),建立空間直角坐標(biāo)系.
設(shè) 因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052602283887098112/SYS201205260230326678731267_DA.files/image018.png">,所以為等邊三角形,
故,.又設(shè),則,.
所以,,,
故 ,
所以,
當(dāng)時(shí),.此時(shí),………………………………6分
設(shè)點(diǎn)的坐標(biāo)為,由(1)知,,則,,,.所以,,
∵, ∴ .
∴,∴. 10分
設(shè)平面的法向量為,則.
∵,,∴
取,解得:, 所以.……………………………… 8分
設(shè)直線與平面所成的角,
∴
.……………………………………………… 10分
又∵∴. ∵,∴.
因此直線與平面所成的角大于,即結(jié)論成立
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
V1 |
V2 |
4 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山西省高三1月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
如圖,在邊長為4的菱形中,.點(diǎn)分別在邊上,點(diǎn)與點(diǎn)不重合,,.沿將翻折到的位置,使平面⊥平面.
(1)求證:⊥平面;
(2)當(dāng)取得最小值時(shí),請解答以下問題:
(i)求四棱錐的體積;
(ii)若點(diǎn)滿足= (),試探究:直線與平面所成角的大小是否一定大于?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在邊長為4的菱形中,.點(diǎn)分別在邊上,點(diǎn)與點(diǎn)不重合,.沿將翻折到的位置,使平面平面.
(1)求證:平面;
(2)設(shè)點(diǎn)滿足,試探究:當(dāng)取得最小值時(shí),直線與平面所成角的大小是否一定大于?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com