(1)求出使不等式anan+1+an-1+an+2>an+2an+3(n∈N)成立的q的取值范圍;
(2)求,其中sn=b1+b2+…+bn。
解:(1)∵是公式比為q的等比數(shù)列,且a1=1,a2=r,
∴ ∵ anan+1+an+1an+2>an2an+3, ∵ ,∴ ∵ r>0,>0,∴ 1+q>q2 解得<q< ∴0<q< (2)∵ a2n-1 a2n=rq2n-1,∴a2n= ① ∵a2n-1∶a2n-1=rq2n-1,∴a2n-1= ② 由①②可得 ③ 同理a2n-1=q a2n-3 ④ ∴ =q(a2n-3+a2n-2)=qbn-1 ∴{(bn)}是公比為q的等比數(shù)列 ∴ ∴ = = 當(dāng)0<q<1時(shí),== 當(dāng)q=1時(shí),==0, 當(dāng)q>1時(shí),Sn=(1+r)(1+q+…+qn-1)=(1+r), .
|
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:山東省棗莊市2010屆高三年級調(diào)研考試數(shù)學(xué)文科試題 題型:044
已知數(shù)列{an}滿a1=1,任意n∈N*,有a1+3a2+5a3+…+(2n-1)an=pn(p為常數(shù))
(1)求p的值及數(shù)列{an}的通項(xiàng)公式;
(2)令bn=anan+1(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Sn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com