已知函數(shù)f(x)=x+sinx(x∈R),且f(y2-6y+11)+f(x2-8x+10)≤0,則當(dāng)y≥3時,函數(shù)F(x,y)=x2+y2的最小值與最大值分別為( )
A.13、45
B.9、45
C.13、49
D.9、49
【答案】分析:由題意可得:函數(shù)f(x)=x+sinx(x∈R)是奇函數(shù),并且在R上是增函數(shù).進(jìn)而可得(x-4)2+(y-3)2≤4(y≥3)表示以(4,3)為圓心,以2為半徑的上半圓面,再根據(jù)x2+y2的幾何意義是點(diǎn)(x,y)到原點(diǎn)的距離的平方可得答案.
解答:解:由題意可得:函數(shù)f(x)=x+sinx(x∈R)是奇函數(shù),
又因?yàn)閒′(x)=1+cosx≥0,
所以函數(shù)f(x)=x+sinx在R上是增函數(shù).
因?yàn)閒(y2-6y+11)+f(x2-8x+10)≤0,
所以f(y2-6y+11)≤-f(x2-8x+10)=f(-x2+8x-10),
所以y2-6y+11≤-x2+8x-10,即(x-4)2+(y-3)2≤4,
因?yàn)閥≥3,所以此不等式表示以(4,3)為圓心,以2為半徑的上半圓面.
根據(jù)x2+y2的幾何意義是點(diǎn)(x,y)到原點(diǎn)的距離的平方可得:x2+y2的最小值與最大值分別為13、49.
故選C.
點(diǎn)評:本題主要考查函數(shù)的單調(diào)性與奇偶性,以及考查x2+y2的幾何意義是距離的平方.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案