函數(shù)y=a2-x(a>0且a≠1)的圖象過定點A,若點A的坐標滿足方程mx+ny=1(m,n>0),則
1
m
+
1
n
的最小值為( 。
A、3+2
2
B、3+
2
2
C、3+
3
2
D、1
考點:指數(shù)函數(shù)的圖像與性質(zhì)
專題:函數(shù)的性質(zhì)及應用
分析:利用a0=1(a≠0)即可得出定點A,代入直線mx+n1=0(m,n>0)即可得到m、n的關系,再利用“乘1法”和基本不等式即可得出.
解答: 解:x=2時,y=a2-2=a0=1,∴函數(shù)y=a2-x(a>0,a≠1)的圖象恒過定點A(2,1),代入直線mx+ny=1(m,n>0)得2m+n=1,
1
m
+
1
n
=(2m+n)(
1
m
+
1
n
)=3+
n
m
+
2m
n
≥3+2
n
m
2m
n
=3+2
2
,當且僅當m=1-
2
2
,n=
2
-1取等號.
1
m
+
1
n
的最小值為3+2
2
,
故選:A
點評:本題主要考查了指數(shù)函數(shù)的性質(zhì)和基本不等式的性質(zhì),熟練掌握a0=1(a≠0)、“乘1法”和基本不等式是解題的關鍵.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若A={x|x2-1<0},B={x|lgx<1},則A∩B=( 。
A、{x|-1<x<10}
B、{x|0<x<10}
C、{x|0<x<1}
D、{x|-1<x<1}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項an=n2(cos2
3
-sin2
3
),其前n項和為Sn,則S60=( 。
A、1840B、1880
C、1960D、1980

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在復平面內(nèi),復數(shù)2i(1+3i)對應的點位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,與y=
x2
是同一函數(shù)的是( 。
A、y=(
x
2
B、y=x
C、y=|x|
D、y=
3x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面向量
a
b
的夾角為150°,
a
=(2,0),|
b
|=2,則|
a
+
3
b
|=( 。
A、
3
B、2
C、2
3
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

試驗測得四組(x,y)的值為(1,3),(3,2),(4,5),(8,6),則x與y之間的回歸直線方程必然經(jīng)過定點( 。
A、(0,1)
B、(4,4)
C、(3.5,4.5)
D、(3,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在等差數(shù)列{an}中,已知a2+a7=18,則S8等于( 。
A、75B、72C、81D、63

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinx,cosx),
b
=(sin(x-
π
6
),sinx),函數(shù)f(x)=2
a
b
,g(x)=f(
πx
4
).
(1)求f(x)在[
π
2
,π]上的最值,并求出相應的x的值;
(2)計算g(1)+g(2)+g(3)+…+g(2014)的值;
(3)已知t∈R,討論g(x)在[t,t+2]上零點的個數(shù).

查看答案和解析>>

同步練習冊答案