已知集合A={(x,y)|
x≥1
y≤1
x-y≤
2
},集合B={(x,y)|xcosα+ysinα-1=0,α∈[0,2π)},若A∩B≠∅,則α的取值范圍是
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃的應(yīng)用,簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:畫出約束條件表示的可行域,集合B表示的區(qū)域,通過(guò)A∩B≠∅,求出α的取值范圍.
解答: 解:由題意集合A={(x,y)|
x≥1
y≤1
x-y≤
2
},表示的可行域如圖三角形,
集合B={(x,y)|xcosα+ysinα-1=0,α∈[0,2π)},表示的區(qū)域是單位圓的切線,若A∩B≠∅,即圖中紅色直線與集合A表示的可行域有交點(diǎn),所以α∈[0,
π
2
]∪[
4
,2π),
故答案為:[0,
π
2
]∪[
4
,2π).
點(diǎn)評(píng):本題考查線性規(guī)劃的應(yīng)用,集合的基本關(guān)系,判斷集合B的圖形是解題的關(guān)鍵,考查轉(zhuǎn)化思想以及計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x2+ax+b(a、b為實(shí)數(shù),x∈R)且f(x)<4解集為(-3,1).
(1)求函數(shù)f(x)的表達(dá)式;
(2)比較x3+3x與f(x)的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀下列材料:關(guān)于x的方程
1
x
+
x
1
=2的解是x=1,
2
x
+
x
2
=2的解是x=2,
3
x
+
x
3
的解是x=3,-
2
x
-
x
2
=2的解是x=-2.
(1)請(qǐng)觀察上述方程與解的特征,關(guān)于x的方程
m
x
+
x
m
=2與上述方程有什么關(guān)系?猜想它的解是什么,并利用“方程的解:的概念進(jìn)行論證;
(2)由上述的觀察、比較、猜想、驗(yàn)證,可得到以下結(jié)論:如果方程的左邊是一個(gè)未知數(shù)倒數(shù)的a倍與這個(gè)未知數(shù)的
1
a
的和等于2,那么這個(gè)方程的解是x=a,請(qǐng)用這個(gè)結(jié)論解關(guān)于x的方程:x2+
1
x2-a
=2+a(a≥-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

寫出一個(gè)滿足下列四個(gè)條件的函數(shù)f(x)的解析式:
①f(x)的形式是f(x)=
a2x+b2
a1x+b1
;
②f(0)=-2,f(1)=-1;
③對(duì)[0,+∞)上的任意x,有f(x)<0;
④f(x)在區(qū)間[0,+∞)上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解不等式:x2-ax≤x+a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

46.某校高一某班的一次數(shù)學(xué)測(cè)試成績(jī)的莖葉圖和頻率分布直方圖都受到不同程度的破壞,(陰影部分為破壞部分)其可見(jiàn)部分如下,據(jù)此解答如下問(wèn)題:

(Ⅰ)計(jì)算頻率分布直方圖中[80,90)間的矩形的高;
(Ⅱ)若要從分?jǐn)?shù)在[80,100]之間的試卷中任取兩份分析學(xué)生失分情況,求在抽取的試卷中,至少有一份的分?jǐn)?shù)在[90,100]之間的概率;
(Ⅲ)根據(jù)頻率分布直方圖估計(jì)這次測(cè)試的平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線y=ax2+bx+3(a≠0)在直線y=1上方部分的x值的取值范圍是{x|-
1
2
<x<
1
3
},則a+b的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=4-x-2-x+1,x∈[-3,2]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,AB=BC=4,∠ABC=30°,AD是邊BC 上的高,則
AD
AC
的值等于( 。
A、2B、4C、6D、8

查看答案和解析>>

同步練習(xí)冊(cè)答案